IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225000507.html
   My bibliography  Save this article

Automated multi-dimensional dynamic planning algorithm for solving energy management problems in fuel cell electric vehicles

Author

Listed:
  • Wang, Kunyu
  • Song, Hao
  • Guo, Zhiqiang
  • Zhang, Xuemin

Abstract

Dynamic programming (DP) is widely recognized as an optimal method for addressing energy management challenges in fuel cell electric vehicles (FCEVs). However, traditional DP struggles with history-dependent and future-dependent constraints that violate Markov properties, such as state of power (SOP) and gas purge duration. Additionally, it faces issues related to penalty function tuning and discretization errors. To overcome these challenges, this study proposes a multi-dimensional automated DP (AuDP) algorithm. The algorithm addresses these critical time-dependent constraints by converting SOP and gas purge duration into Markov states. Moreover, it eliminates the need for penalty functions by using the fuel cell power rate as the control variable, defining state of charge (SOC) grid boundaries using the Brent iteration method, and integrating gas purge mode into the FCEV operating mode. The algorithm also introduces adaptive SOC grid density and SOC grid reconfiguration methods to minimize discretization errors, while employing parallel computing to expedite computation. AuDP is validated under CLTC and WLTC driving cycles, demonstrating its effectiveness in managing time-dependent constraints and co-optimizing the battery and fuel cell. Compared to conventional DP, AuDP shows significant improvements, achieving at least a 2.33 % increase in accuracy and a 57.63 % reduction in computational time.

Suggested Citation

  • Wang, Kunyu & Song, Hao & Guo, Zhiqiang & Zhang, Xuemin, 2025. "Automated multi-dimensional dynamic planning algorithm for solving energy management problems in fuel cell electric vehicles," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225000507
    DOI: 10.1016/j.energy.2025.134408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    3. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Liu, Shiguang, 2024. "Analysis and control strategy design for PEMFC purging process," Energy, Elsevier, vol. 290(C).
    4. Correa, G. & Muñoz, P.M. & Rodriguez, C.R., 2019. "A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus," Energy, Elsevier, vol. 187(C).
    5. Song, Ke & Wang, Xiaodi & Li, Feiqiang & Sorrentino, Marco & Zheng, Bailin, 2020. "Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability," Energy, Elsevier, vol. 205(C).
    6. Guo, Ruohan & Shen, Weixiang, 2022. "Online state of charge and state of power co-estimation of lithium-ion batteries based on fractional-order calculus and model predictive control theory," Applied Energy, Elsevier, vol. 327(C).
    7. Chen, Shuang & Hu, Minghui & Guo, Shanqi, 2023. "Fast dynamic-programming algorithm for solving global optimization problems of hybrid electric vehicles," Energy, Elsevier, vol. 273(C).
    8. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    9. Bao, Shuyue & Sun, Ping & Zhu, Jianxin & Ji, Qian & Liu, Junheng, 2022. "Improved multi-dimensional dynamic programming energy management strategy for a vehicle power-split hybrid powertrain," Energy, Elsevier, vol. 256(C).
    10. Koubaa, Rayhane & krichen, Lotfi, 2017. "Double layer metaheuristic based energy management strategy for a Fuel Cell/Ultra-Capacitor hybrid electric vehicle," Energy, Elsevier, vol. 133(C), pages 1079-1093.
    11. Maino, Claudio & Misul, Daniela & Musa, Alessia & Spessa, Ezio, 2021. "Optimal mesh discretization of the dynamic programming for hybrid electric vehicles," Applied Energy, Elsevier, vol. 292(C).
    12. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    14. Wu, Jingda & Huang, Chao & He, Hongwen & Huang, Hailong, 2024. "Confidence-aware reinforcement learning for energy management of electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Zhou, Jianhao & Liu, Jun & Xue, Yuan & Liao, Yuhui, 2022. "Total travel costs minimization strategy of a dual-stack fuel cell logistics truck enhanced with artificial potential field and deep reinforcement learning," Energy, Elsevier, vol. 239(PA).
    16. Zhou, Hongxu & Yu, Zhongwei & Wu, Xiaohua & Fan, Zhanfeng & Yin, Xiaofeng & Zhou, Lingxue, 2023. "Dynamic programming improved online fuzzy power distribution in a demonstration fuel cell hybrid bus," Energy, Elsevier, vol. 284(C).
    17. Peng, Hujun & Li, Jianxiang & Löwenstein, Lars & Hameyer, Kay, 2020. "A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Yunge & Yang, Yalian & Zhang, Yuxin & Liu, Changdong, 2024. "Computationally efficient assessment of fuel economy of multi-modes and multi-gears hybrid electric vehicles: A hyper rapid dynamic programming approach," Energy, Elsevier, vol. 313(C).
    2. Zhang, Yahui & Wei, Zeyi & Wang, Zhong & Tian, Yang & Wang, Jizhe & Tian, Zhikun & Xu, Fuguo & Jiao, Xiaohong & Li, Liang & Wen, Guilin, 2024. "Hierarchical eco-driving control strategy for connected automated fuel cell hybrid vehicles and scenario-/hardware-in-the loop validation," Energy, Elsevier, vol. 292(C).
    3. Wei, Zhengchao & Ma, Yue & Yang, Ningkang & Ruan, Shumin & Xiang, Changle, 2023. "Reinforcement learning based power management integrating economic rotational speed of turboshaft engine and safety constraints of battery for hybrid electric power system," Energy, Elsevier, vol. 263(PB).
    4. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    5. Fan Wang & Yina Hong & Xiaohuan Zhao, 2025. "Research and Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles: A Review," Energies, MDPI, vol. 18(11), pages 1-28, May.
    6. Fabrizio Donatantonio & Alessandro Ferrara & Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2022. "Novel Approaches for Energy Management Strategies of Hybrid Electric Vehicles and Comparison with Conventional Solutions," Energies, MDPI, vol. 15(6), pages 1-22, March.
    7. Chen, Shuang & Hu, Minghui & Guo, Shanqi, 2023. "Fast dynamic-programming algorithm for solving global optimization problems of hybrid electric vehicles," Energy, Elsevier, vol. 273(C).
    8. Hsieh, Chuang-Yu & Pei, Pucheng & Bai, Qiang & Su, Ay & Weng, Fang-Bor & Lee, Chi-Yuan, 2021. "Results of a 200 hours lifetime test of a 7 kW Hybrid–Power fuel cell system on electric forklifts," Energy, Elsevier, vol. 214(C).
    9. Huang, Ying & Wang, Shilong & Li, Ke & Fan, Zhuwei & Xie, Haiming & Jiang, Fachao, 2023. "Multi-parameter adaptive online energy management strategy for concrete truck mixers with a novel hybrid powertrain considering vehicle mass," Energy, Elsevier, vol. 277(C).
    10. Wang, Renkang & Li, Kai & Ming, Yuan & Guo, Wenjun & Deng, Bo & Tang, Hao, 2024. "An enhanced salp swarm algorithm with chaotic mapping and dynamic learning for optimizing purge process of proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 308(C).
    11. Sara Luciani & Andrea Tonoli, 2022. "Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 15(6), pages 1-17, March.
    12. Xu, Haisong & Wang, Lei & Xie, Lei & Su, Hongye & Lu, Jianshan & Liu, Zhiyang, 2024. "Freeze start of proton exchange membrane fuel cell systems with closed-loop purging and improved voltage consistency," Applied Energy, Elsevier, vol. 374(C).
    13. Ji, Xinzhe & Sun, Kangwen & Liang, Haoquan & Guo, Xiao & Yang, Xixiang & Shan, Chuan, 2025. "Energy management in hybrid energy system for long-duration stratospheric airship mission," Energy, Elsevier, vol. 324(C).
    14. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    15. Hou, Shengyan & Yin, Hai & Xu, Fuguo & Benjamín, Pla & Gao, Jinwu & Chen, Hong, 2023. "Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles," Energy, Elsevier, vol. 266(C).
    16. Ma, Yan & Qi, Baohui & Wang, Siyu & Ma, Qian & Sui, Zhen & Gao, Jinwu, 2025. "Real-time energy management of fuel cell hybrid electric vehicle based on variable horizon velocity prediction considering power source durability," Energy, Elsevier, vol. 315(C).
    17. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    18. Alcázar-García, Désirée & Romeral Martínez, José Luis, 2022. "Model-based design validation and optimization of drive systems in electric, hybrid, plug-in hybrid and fuel cell vehicles," Energy, Elsevier, vol. 254(PA).
    19. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225000507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.