IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1739-d1624723.html
   My bibliography  Save this article

Optimizing Feedstock Selection for Sustainable Small-Scale Biogas Systems Using the Analytic Hierarchy Process

Author

Listed:
  • Joshua Ngetuny

    (Institute of New Energy Systems (InES), Technische Hochschule Ingolstadt (THI), Esplanade 10, 85049 Ingolstadt, Germany
    Department of Chemical and Process Engineering, The Technical University of Kenya (TUK), Nairobi P.O. Box 52428-00200, Kenya)

  • Tobias Baldauf

    (Institute of New Energy Systems (InES), Technische Hochschule Ingolstadt (THI), Esplanade 10, 85049 Ingolstadt, Germany)

  • Wilfried Zörner

    (Institute of New Energy Systems (InES), Technische Hochschule Ingolstadt (THI), Esplanade 10, 85049 Ingolstadt, Germany)

Abstract

Small-scale biogas systems can play a pivotal role in sustainable energy provision, particularly in developing countries. However, their dependence on livestock manure as the only feedstock poses challenges to their adoption and long-term viability. This often leads to insufficient biogas production and plant abandonment. This study proposes co-digestion of livestock manure with other farm residues to enhance the technical sustainability of small-scale biogas systems by ensuring adequate and consistent biogas production throughout the plant’s lifespan, minimizing the risks associated with reliance on a single feedstock. A novel feedstock selection approach is developed using the Analytic Hierarchy Process (AHP), a multicriteria decision-making method, to prioritize feedstocks based on adequacy, supply consistency, and logistical ease. AHP is chosen due to its capability to handle both quantitative and qualitative evaluation criteria. This approach is applied to the Fès-Meknès region of Morocco, which offers abundant livestock and crop residues alongside product utilization pathways. The prioritization and ranking of the potential feedstocks identified in the region reveals cattle manure as the top-ranked feedstock due to its consistent supply and ease of collection, followed by straw, valued for its storability and nutrient stability. Sheep, horse, and chicken manure ranked third, fourth, and fifth, respectively, while household food waste and fruit and vegetable residues, limited by seasonality and perishability, were ranked lower. Based on these findings, co-digestion of cattle manure and straw is proposed as a sustainable strategy for small-scale biogas plants in Fès-Meknès, addressing feedstock shortages, enhancing biogas production, and reducing plant abandonment. This approach strengthens technical sustainability and promotes the broader adoption of biogas technologies in developing countries.

Suggested Citation

  • Joshua Ngetuny & Tobias Baldauf & Wilfried Zörner, 2025. "Optimizing Feedstock Selection for Sustainable Small-Scale Biogas Systems Using the Analytic Hierarchy Process," Energies, MDPI, vol. 18(7), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1739-:d:1624723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas L. Saaty, 1987. "Risk—Its Priority and Probability: The Analytic Hierarchy Process," Risk Analysis, John Wiley & Sons, vol. 7(2), pages 159-172, June.
    2. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    3. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    4. Yevang Nhiavue & Han Soo Lee & Sylvester William Chisale & Jonathan Salar Cabrera, 2022. "Prioritization of Renewable Energy for Sustainable Electricity Generation and an Assessment of Floating Photovoltaic Potential in Lao PDR," Energies, MDPI, vol. 15(21), pages 1-20, November.
    5. Jovanović, Marina & Afgan, Naim & Radovanović, Predrag & Stevanović, Vladimir, 2009. "Sustainable development of the Belgrade energy system," Energy, Elsevier, vol. 34(5), pages 532-539.
    6. Meiying Xie & Xiang Cai & Zhengli Xu & Nan Zhou & Dongqing Yan, 2022. "Factors contributing to abandonment of household biogas digesters in rural China: a study of stakeholder perspectives using Q-methodology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7698-7724, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).
    2. Ashraf Abdelkarim & Mohamed Hssan Hassan Abdelhafez & Khaled Elkhayat & Mohammad Alshenaifi & Sultan Alfraidi & Ali Aldersoni & Ghazy Albaqawy & Amer Aldamaty & Ayman Ragab, 2024. "Spatial Suitability Index for Sustainable Urban Development in Desert Hinterland Using a Geographical-Information-System-Based Multicriteria Decision-Making Approach," Land, MDPI, vol. 13(7), pages 1-37, July.
    3. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Jane Rose Atwongyeire & Arkom Palamanit & Adul Bennui & Mohammad Shakeri & Kuaanan Techato & Shahid Ali, 2022. "Assessment of Suitable Areas for Smart Grid of Power Generated from Renewable Energy Resources in Western Uganda," Energies, MDPI, vol. 15(4), pages 1-31, February.
    5. Naval, Natalia & Yusta, Jose M., 2024. "Assessment of cross-border electricity interconnection projects using a MCDA method," International Journal of Critical Infrastructure Protection, Elsevier, vol. 46(C).
    6. Ibrahim, Nur Atirah & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Mustaffa, Azizul Azri & Kidam, Kamarizan & Md Reba, Mohd Nadzri & Ahmad Termizi, Siti Nor Azreen, 2024. "GIS-based analysis of flood and drought susceptibility in renewable energy systems planning," Energy, Elsevier, vol. 313(C).
    7. Koc, Kerim & Ekmekcioğlu, Ömer & Işık, Zeynep, 2023. "Developing a probabilistic decision-making model for reinforced sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 259(C).
    8. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    9. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    10. Li, Xia & Xu, Li & Cai, Jingjing & Peng, Cheng & Bian, Xiaoyan, 2024. "Offshore wind turbine selection with multi-criteria decision-making techniques involving D numbers and squeeze adversarial interpretive structural modeling method," Applied Energy, Elsevier, vol. 368(C).
    11. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    12. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    13. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    14. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    15. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    16. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    17. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    18. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    19. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    20. Xiaoyan Jiang & Sai Wang & Jie Wang & Sainan Lyu & Martin Skitmore, 2020. "A Decision Method for Construction Safety Risk Management Based on Ontology and Improved CBR: Example of a Subway Project," IJERPH, MDPI, vol. 17(11), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1739-:d:1624723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.