IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1542-d1616414.html
   My bibliography  Save this article

Optimizing Ventilation Strategies for Thermal Comfort in Mediterranean Schools: A Dynamic Modeling Approach

Author

Listed:
  • Paolo Maria Congedo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Andrea Palmieri

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Cristina Baglivo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

Abstract

Schools, key symbols of progress and innovation, require particular attention regarding energy efficiency, which is considered a strategic priority in sustainable development policies. Improving energy efficiency in schools reduces costs and environmental impact while educating students and the community about sustainability. Ensuring good air quality and thermal comfort is also crucial for student well-being and performance, resulting in improved productivity, health, and concentration. This study shows that proper ventilation in schools can maintain thermal comfort by exploiting the heat loads generated by the environment and equipment. Yearly and hourly analyses were conducted in terms of internal operative temperature on a simplified school prototype located in a Mediterranean city following the UNI EN ISO 52016 standard. Thermal comfort was evaluated in accordance with the UNI EN 16798-1 standard and tested for different air exchange rates. The results showed that the heating system would typically operate for about 1000 h per year, excluding holiday periods when teaching activities are suspended. With the implementation of a suitable ventilation system, however, the need for a heating system could be removed.

Suggested Citation

  • Paolo Maria Congedo & Andrea Palmieri & Cristina Baglivo, 2025. "Optimizing Ventilation Strategies for Thermal Comfort in Mediterranean Schools: A Dynamic Modeling Approach," Energies, MDPI, vol. 18(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1542-:d:1616414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sandra N. Jendrossek & Lukas A. Jurk & Kirsten Remmers & Yunus E. Cetin & Wolfgang Sunder & Martin Kriegel & Petra Gastmeier, 2023. "The Influence of Ventilation Measures on the Airborne Risk of Infection in Schools: A Scoping Review," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    2. Cristina Baglivo, 2021. "Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    3. Buyak, Nadia & Deshko, Valeriy & Bilous, Inna & Pavlenko, Anatoliy & Sapunov, Anatoliy & Biriukov, Dmytro, 2023. "Dynamic interdependence of comfortable thermal conditions and energy efficiency increase in a nursery school building for heating and cooling period," Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rayane de Lima Moura Paiva & Lucas Rosse Caldas & Adriana Paiva de Souza Martins & Patricia Brandão de Sousa & Giulia Fea de Oliveira & Romildo Dias Toledo Filho, 2021. "Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    2. Rosa Francesca De Masi & Valentino Festa & Antonio Gigante & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of Climate Changes on Renewable Production in the Mediterranean Climate: Case Study of the Energy Retrofit for a Detached House," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    3. López-Pérez, Luis Adrián & Flores-Prieto, José Jassón, 2023. "Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence," Energy, Elsevier, vol. 263(PA).
    4. Dušan Ranđelović & Vladan Jovanović & Marko Ignjatović & Janusz Marchwiński & Ołeksij Kopyłow & Vuk Milošević, 2024. "Improving Energy Efficiency of School Buildings: A Case Study of Thermal Insulation and Window Replacement Using Cost-Benefit Analysis and Energy Simulations," Energies, MDPI, vol. 17(23), pages 1-31, December.
    5. Ren, Peng & Chen, Lunshu & Hui, Hongxun, 2024. "Power-controllable variable refrigerant flow system with flexibility value for demand response," Energy, Elsevier, vol. 313(C).
    6. Paolo Maria Congedo & Cristina Baglivo & Giulia Negro, 2021. "A New Device Hypothesis for Water Extraction from Air and Basic Air Condition System in Developing Countries," Energies, MDPI, vol. 14(15), pages 1-18, July.
    7. Sun, Guoxin & Yu, Yongheng & Yu, Qihui & Tan, Xin & Wu, Linfeng & Qin, Ripeng & Wang, Yahui, 2024. "Enhanced temperature regulation in compound heating systems: Leveraging guided policy search and model predictive control," Renewable Energy, Elsevier, vol. 236(C).
    8. Christopher Otoo & Tao Lu & Xiaoshu Lü, 2024. "Application of Mixed-Mode Ventilation to Enhance Indoor Air Quality and Energy Efficiency in School Buildings," Energies, MDPI, vol. 17(23), pages 1-24, December.
    9. Davidson, Eleni & Schwartz, Yair & Williams, Joe & Mumovic, Dejan, 2024. "Resilience of the higher education sector to future climates: A systematic review of predicted building energy performance and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Kaja Primc & Renata Slabe‐Erker & Miha Dominko, 2023. "Towards the development of a systematic approach for sustainability assessment of educational infrastructure: A system of priority areas and design quality indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(4), pages 2565-2582, August.
    11. Duan, Zhuocheng & de Wilde, Pieter & Attia, Shady & Zuo, Jian, 2025. "Challenges in predicting the impact of climate change on thermal building performance through simulation: A systematic review," Applied Energy, Elsevier, vol. 382(C).
    12. Zhikun Ding & Jinze Li & Zhan Wang & Zhaoyang Xiong, 2024. "Multi-Objective Optimization of Building Envelope Retrofits Considering Future Climate Scenarios: An Integrated Approach Using Machine Learning and Climate Models," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    13. Liyanage, Don Rukmal & Hewage, Kasun & Hussain, Syed Asad & Razi, Faran & Sadiq, Rehan, 2024. "Climate adaptation of existing buildings: A critical review on planning energy retrofit strategies for future climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Ekpo Otu & Kirsti Ashworth & Emmanuel Tsekleves & Aniebietabasi Ackley, 2024. "Empowering London Primary School Communities to Know and Tackle Air Pollution Exposure," Sustainability, MDPI, vol. 16(17), pages 1-29, August.
    15. Nicoletta Matera & Domenico Mazzeo & Cristina Baglivo & Paolo Maria Congedo, 2023. "Energy Independence of a Small Office Community Powered by Photovoltaic-Wind Hybrid Systems in Widely Different Climates," Energies, MDPI, vol. 16(10), pages 1-15, May.
    16. D'Agostino, Delia & Congedo, Paolo Maria & Albanese, Paola Maria & Rubino, Alessandro & Baglivo, Cristina, 2024. "Impact of climate change on the energy performance of building envelopes and implications on energy regulations across Europe," Energy, Elsevier, vol. 288(C).
    17. Yat Huang Yau & Umair Ahmed Rajput & Altaf Hussain Rajpar & Natalia Lastovets, 2022. "Effects of Air Supply Terminal Devices on the Performance of Variable Refrigerant Flow Integrated Stratum Ventilation System: An Experimental Study," Energies, MDPI, vol. 15(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1542-:d:1616414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.