IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032802.html
   My bibliography  Save this article

Impact of climate change on the energy performance of building envelopes and implications on energy regulations across Europe

Author

Listed:
  • D'Agostino, Delia
  • Congedo, Paolo Maria
  • Albanese, Paola Maria
  • Rubino, Alessandro
  • Baglivo, Cristina

Abstract

This paper delves into the potential impact of a changing climate on the energy performance of European buildings. Research aims to provide a comprehensive evaluation of current energy requirements focusing on the envelope, considering existing regulations in national policies.

Suggested Citation

  • D'Agostino, Delia & Congedo, Paolo Maria & Albanese, Paola Maria & Rubino, Alessandro & Baglivo, Cristina, 2024. "Impact of climate change on the energy performance of building envelopes and implications on energy regulations across Europe," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032802
    DOI: 10.1016/j.energy.2023.129886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delia D’Agostino & Ilaria Zacà & Cristina Baglivo & Paolo Maria Congedo, 2017. "Economic and Thermal Evaluation of Different Uses of an Existing Structure in a Warm Climate," Energies, MDPI, vol. 10(5), pages 1-29, May.
    2. Eldho Abraham & Vladyslav Cherpak & Bohdan Senyuk & Jan Bart Hove & Taewoo Lee & Qingkun Liu & Ivan I. Smalyukh, 2023. "Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings," Nature Energy, Nature, vol. 8(4), pages 381-396, April.
    3. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    4. Cristina Baglivo, 2021. "Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    5. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    6. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    8. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    9. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    10. Baglivo, Cristina & Congedo, Paolo Maria, 2015. "Design method of high performance precast external walls for warm climate by multi-objective optimization analysis," Energy, Elsevier, vol. 90(P2), pages 1645-1661.
    11. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    12. Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Simulation-based approach to optimize passively designed buildings: A case study on a typical architectural form in hot and humid climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1712-1725.
    13. Hatwaambo, Sylvester & Jain, Prem C. & Perers, Bengt & Karlsson, Bjorn, 2009. "Projected beam irradiation at low latitudes using Meteonorm database," Renewable Energy, Elsevier, vol. 34(5), pages 1394-1398.
    14. Baglivo, Cristina & Congedo, Paolo Maria, 2016. "High performance precast external walls for cold climate by a multi-criteria methodology," Energy, Elsevier, vol. 115(P1), pages 561-576.
    15. Chen, Xi & Yang, Hongxing, 2018. "Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China," Applied Energy, Elsevier, vol. 215(C), pages 145-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    2. Delia D’Agostino & Danny Parker & Ilenia Epifani & Dru Crawley & Linda Lawrie, 2022. "Datasets on Energy Simulations of Standard and Optimized Buildings under Current and Future Weather Conditions across Europe," Data, MDPI, vol. 7(5), pages 1-18, May.
    3. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    4. Naji, Sareh & Aye, Lu & Noguchi, Masa, 2021. "Sensitivity analysis on energy performance, thermal and visual discomfort of a prefabricated house in six climate zones in Australia," Applied Energy, Elsevier, vol. 298(C).
    5. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    6. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    7. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    8. Yuan Fang & Soolyeon Cho & Yanyu Wang & Luya He, 2023. "Sensitivity Analysis and Multi-Objective Optimization of Skylight Design in the Early Design Stage," Energies, MDPI, vol. 17(1), pages 1-18, December.
    9. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Hua Zhang & Junya Ye & Kunming Li & Shujie Niu & Xiao Liu, 2024. "Multi-Stage Sensitivity Analysis of the Energy Demand for the Cooling of Grain Warehouses in Cold Regions of China," Agriculture, MDPI, vol. 14(2), pages 1-15, January.
    11. Paolo Zangheri & Delia D’Agostino & Roberto Armani & Carmen Maduta & Paolo Bertoldi, 2023. "Progress in the Cost-Optimal Methodology Implementation in Europe: Datasets Insights and Perspectives in Member States," Data, MDPI, vol. 8(6), pages 1-27, May.
    12. Cristina Baglivo & Paolo Maria Congedo & Matteo Di Cataldo & Luigi Damiano Coluccia & Delia D’Agostino, 2017. "Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate," Energies, MDPI, vol. 10(11), pages 1-34, November.
    13. Rosa Francesca De Masi & Valentino Festa & Antonio Gigante & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of Climate Changes on Renewable Production in the Mediterranean Climate: Case Study of the Energy Retrofit for a Detached House," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    14. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    15. Yingying Zhou & Christiane Margerita Herr, 2023. "A Review of Advanced Façade System Technologies to Support Net-Zero Carbon High-Rise Building Design in Subtropical China," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    16. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    17. dos Santos Ferreira, Greicili & Martins dos Santos, Deilson & Luciano Avila, Sérgio & Viana Luiz Albani, Vinicius & Cardoso Orsi, Gustavo & Cesar Cordeiro Vieira, Pedro & Nilson Rodrigues, Rafael, 2023. "Short- and long-term forecasting for building energy consumption considering IPMVP recommendations, WEO and COP27 scenarios," Applied Energy, Elsevier, vol. 339(C).
    18. Huang, Junchao & Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems," Applied Energy, Elsevier, vol. 229(C), pages 1048-1060.
    19. Kyriakidis, A. & Michael, A. & Illampas, R. & Charmpis, D.C. & Ioannou, I., 2019. "Comparative evaluation of a novel environmentally responsive modular wall system based on integrated quantitative and qualitative criteria," Energy, Elsevier, vol. 188(C).
    20. Xueying Jia & Hui Zhang & Xin Yao & Lei Yang & Zikang Ke & Junle Yan & Xiaoxi Huang & Shiyu Jin, 2023. "Research on Technology System Adaptability of Nearly Zero-Energy Office Buildings in the Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 15(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.