IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p882-d1589844.html
   My bibliography  Save this article

The Possibility of Intermittent Water Spray Implementation in a Non-Porous Indirect Evaporative Cooler

Author

Listed:
  • Łukasz Stefaniak

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50377 Wrocław, Poland)

  • Juliusz Walaszczyk

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50377 Wrocław, Poland)

  • Michał Karpuk

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50377 Wrocław, Poland)

  • Krzysztof Rajski

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50377 Wrocław, Poland)

  • Jan Danielewicz

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50377 Wrocław, Poland)

Abstract

Evaporative cooling is a sustainable and energy-efficient technology based on water evaporation to achieve cooling. It uses air (R-729) and water (R-718) as refrigerants, so its effect on global warming is limited. Recent research focuses development of porous heat exchanger surfaces to be used in evaporative cooling technology with intermittent water spray. However, non-porous surfaces were not investigated. Here, we present the possibility of implementing intermittent water spray in a non-porous indirect evaporative cooler. The experimental results show that it increases the cooling capacity when compared to the constant water spray for chosen outdoor air parameters (20–30 °C and 40–50% relative humidity). Also, the time after the outlet air temperature achieves minimum value (4–6 min) is presented for a certain non-porous heat exchanger. The maximum cooling capacity obtained without spraying is 25–64% higher than the cooling capacity in steady-state conditions under constant water spraying. The regression model approach is employed to describe the observation. The results introduce a new path in evaporative cooling technology development. They also create the possibility of improving the effectiveness of existing systems by modifying only the water system management, without any changes in construction or replacing the heat exchanger.

Suggested Citation

  • Łukasz Stefaniak & Juliusz Walaszczyk & Michał Karpuk & Krzysztof Rajski & Jan Danielewicz, 2025. "The Possibility of Intermittent Water Spray Implementation in a Non-Porous Indirect Evaporative Cooler," Energies, MDPI, vol. 18(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:882-:d:1589844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahzad, Muhammad Wakil & Burhan, Muhammad & Ybyraiymkul, Doskhan & Oh, Seung Jin & Ng, Kim Choon, 2019. "An improved indirect evaporative cooler experimental investigation," Applied Energy, Elsevier, vol. 256(C).
    2. Maryse Labriet & Santosh Joshi & Marc Vielle & Philip Holden & Neil Edwards & Amit Kanudia & Richard Loulou & Frédéric Babonneau, 2015. "Worldwide impacts of climate change on energy for heating and cooling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1111-1136, October.
    3. Shi, Wenchao & Min, Yunran & Ma, Xiaochen & Chen, Yi & Yang, Hongxing, 2022. "Dynamic performance evaluation of porous indirect evaporative cooling system with intermittent spraying strategies," Applied Energy, Elsevier, vol. 311(C).
    4. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    5. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Eric Wilczynski, 2022. "Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Stefaniak & Agnieszka Grabka & Juliusz Walaszczyk & Krzysztof Rajski & Jan Danielewicz & Wiktoria Jaskóła & Maja Wochniak & Weronika Żyta, 2025. "Enhancing Dewpoint Indirect Evaporative Cooling with Intermittent Water Spraying and Advanced Materials: A Review," Energies, MDPI, vol. 18(9), pages 1-24, April.
    2. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
    4. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2020. "Analytical/experimental sensitivity study of key design and operational parameters of perforated Maisotsenko cooler based on novel wet-surface theory," Applied Energy, Elsevier, vol. 262(C).
    5. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
    7. Pandelidis, Demis & Cichoń, Aleksandra & Pacak, Anna & Anisimov, Sergey & Drąg, Paweł, 2018. "Counter-flow indirect evaporative cooler for heat recovery in the temperate climate," Energy, Elsevier, vol. 165(PA), pages 877-894.
    8. Elnagar, Essam & Pezzutto, Simon & Duplessis, Bruno & Fontenaille, Théodore & Lemort, Vincent, 2023. "A comprehensive scouting of space cooling technologies in Europe: Key characteristics and development trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    9. Rasikh Tariq & Changhong Zhan & Nadeem Ahmed Sheikh & Xudong Zhao, 2018. "Thermal Performance Enhancement of a Cross-Flow-Type Maisotsenko Heat and Mass Exchanger Using Various Nanofluids," Energies, MDPI, vol. 11(10), pages 1-19, October.
    10. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
    11. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    12. Ali Badiei & Eric Jadowski & Saba Sadati & Arash Beizaee & Jing Li & Leila Khajenoori & Hamid Reza Nasriani & Guiqiang Li & Xin Xiao, 2023. "The Energy-Saving Potential of Air-Side Economisers in Modular Data Centres: Analysis of Opportunities and Risks in Different Climates," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    13. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    14. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2018. "Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler," Applied Energy, Elsevier, vol. 228(C), pages 2176-2194.
    15. Chu, Junjie & Xu, Wei & Huang, Xiang & Geng, Zhichao & Xuan, Jingwen, 2022. "Study on optimization of indirect-direct evaporative chiller for producing cold water in hot and dry areas," Renewable Energy, Elsevier, vol. 181(C), pages 898-913.
    16. Wang, Jue & Lu, Jun & Li, Wuyan & Zeng, Cheng & Shi, Fenghao, 2022. "Numerical study on performance of a hybrid indirect evaporative cooling heat recovery heat pump ventilator as applied in different climatic regions of China," Energy, Elsevier, vol. 239(PE).
    17. Keii Gi & Fuminori Sano & Ayami Hayashi & Toshimasa Tomoda & Keigo Akimoto, 2018. "A global analysis of residential heating and cooling service demand and cost-effective energy consumption under different climate change scenarios up to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 51-79, January.
    18. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    19. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    20. Albahri, O.S. & Alamoodi, A.H. & Deveci, Muhammet & Albahri, A.S. & Mahmoud, Moamin A. & Sharaf, Iman Mohamad & Coffman, D'Maris, 2023. "Multi-perspective evaluation of integrated active cooling systems using fuzzy decision making model," Energy Policy, Elsevier, vol. 182(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:882-:d:1589844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.