IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10777-d1190306.html
   My bibliography  Save this article

The Energy-Saving Potential of Air-Side Economisers in Modular Data Centres: Analysis of Opportunities and Risks in Different Climates

Author

Listed:
  • Ali Badiei

    (School of Engineering, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK)

  • Eric Jadowski

    (Department of Engineering, Faculty of Science and Engineering, University of Hull, Hull HU6 7RX, UK)

  • Saba Sadati

    (School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK)

  • Arash Beizaee

    (School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Jing Li

    (Centre for Sustainable Energy Technologies, Energy and Environment Institute, University of Hull, Hull HU6 7RX, UK)

  • Leila Khajenoori

    (School of Engineering, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK)

  • Hamid Reza Nasriani

    (School of Engineering, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK)

  • Guiqiang Li

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China)

  • Xin Xiao

    (School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China)

Abstract

This study examines the feasibility of utilising outside air for ‘free cooling’ in modular data centres through the implementation of an air-side economiser, as an alternative to traditional mechanical cooling systems. The objective is to offset the energy consumption associated with cooling by leveraging the natural cooling capacity of the ambient air. To investigate this potential, a 90-kW modular data centre is employed as the base case for model validation and analysis of energy reduction possibilities. The research employs dynamic thermal modelling techniques to assess the efficacy of the air-side economiser in four distinct climatic zones: Stockholm, Dubai, San Francisco, and Singapore, representing diverse worldwide climates. The model is meticulously calibrated and validated using power usage effectiveness (PUE) values obtained from the Open Compute Project. Simulation runs are conducted to evaluate the energy-reduction potential achievable with the air-side economiser compared to conventional mechanical air-conditioning systems. The results indicate significant energy reductions of up to 86% in moderate climates, while minimal reductions are observed in dry and hot climates. This comprehensive analysis offers valuable insights into the intricate relationship between modular data centres, their operational characteristics, and the viability of employing air-side economisers for free cooling and energy efficiency across different climatic conditions. The contribution of this publication to this field of science lies in its exploration of the practicality and energy-saving potential of air-side economisers in modular data centres. By utilising dynamic thermal modelling and empirical validation, this study provides evidence-based insights into the effectiveness of this cooling strategy, shedding light on its applicability in various climates. The findings contribute to the understanding of energy-efficient cooling solutions in data-centre design and operation, paving the way for more sustainable practices in the field.

Suggested Citation

  • Ali Badiei & Eric Jadowski & Saba Sadati & Arash Beizaee & Jing Li & Leila Khajenoori & Hamid Reza Nasriani & Guiqiang Li & Xin Xiao, 2023. "The Energy-Saving Potential of Air-Side Economisers in Modular Data Centres: Analysis of Opportunities and Risks in Different Climates," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10777-:d:1190306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    2. Golizadeh Akhlaghi, Yousef & Aslansefat, Koorosh & Zhao, Xudong & Sadati, Saba & Badiei, Ali & Xiao, Xin & Shittu, Samson & Fan, Yi & Ma, Xiaoli, 2021. "Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050," Applied Energy, Elsevier, vol. 281(C).
    3. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    4. Fujen Wang & Yishun Huang & BowoYuli Prasetyo, 2019. "Energy-Efficient Improvement Approaches through Numerical Simulation and Field Measurement for a Data Center," Energies, MDPI, vol. 12(14), pages 1-18, July.
    5. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    6. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Raihan Ul Islam & Xhesika Ruci & Mohammad Shahadat Hossain & Karl Andersson & Ah-Lian Kor, 2019. "Capacity Management of Hyperscale Data Centers Using Predictive Modelling," Energies, MDPI, vol. 12(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    2. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    3. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler," Applied Energy, Elsevier, vol. 217(C), pages 126-142.
    4. Jan Taler & Bartosz Jagieła & Magdalena Jaremkiewicz, 2022. "Overview of the M-Cycle Technology for Air Conditioning and Cooling Applications," Energies, MDPI, vol. 15(5), pages 1-19, March.
    5. Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
    6. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Ferdinando Salata & Anna Tarsitano & Iacopo Golasi & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Application of Absorption Systems Powered by Solar Ponds in Warm Climates for the Air Conditioning in Residential Buildings," Energies, MDPI, vol. 9(10), pages 1-18, October.
    9. Krzysztof Rajski & Jan Danielewicz & Ewa Brychcy, 2020. "Performance Evaluation of a Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler," Energies, MDPI, vol. 13(1), pages 1-20, January.
    10. Yugang Wang & Xiang Huang & Li Li, 2018. "Comparative Study of the Cross-Flow Heat and Mass Exchangers for Indirect Evaporative Cooling Using Numerical Methods," Energies, MDPI, vol. 11(12), pages 1-14, December.
    11. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    12. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    13. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    14. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    15. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    16. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    17. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    19. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    20. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10777-:d:1190306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.