IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p873-d1589619.html
   My bibliography  Save this article

A Bi-Level Method for Flexibility Feature Extraction and User Clustering Based on Real-World Data from Independent Smart Meters of Residential Electric Vehicle Users

Author

Listed:
  • Jian Zhang

    (State Grid Tianjin Electric Power Company, Hebei District, Tianjin 300010, China)

  • Shujun Li

    (Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610042, China)

  • Lili Li

    (Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610042, China)

  • Guoqiang Zu

    (State Grid Tianjin Electric Power Company, Hebei District, Tianjin 300010, China)

  • Yongchun Wang

    (Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610042, China)

  • Ting Yang

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

Abstract

Residential electric vehicle (EV) chargers in China are typically paired with independent smart meters. A bi-level method for extracting flexibility features and clustering residential EV users is proposed based on real-world smart meter data, offering significant advantages in terms of data accessibility and implementation feasibility. First, real-world smart meter data from over 5000 residential EV users are partitioned into charging segments, which are then filtered and grouped. At the charging segment level, three charging features are extracted using the Pearson correlation method, and six categories of charging segments are clustered using a Gaussian Mixture Model (GMM). Subsequently, at the user level, two flexibility features are extracted based on the charging segment clustering results, and five categories of residential EV users are clustered using the K-means algorithm. The results of the bi-level method are presented and analyzed, with its effectiveness validated by comparing the trends of flexibility features across different user categories between the training dataset and the validation dataset. In the concluding section, the limitations of the current research are discussed, and potential directions for further research are outlined.

Suggested Citation

  • Jian Zhang & Shujun Li & Lili Li & Guoqiang Zu & Yongchun Wang & Ting Yang, 2025. "A Bi-Level Method for Flexibility Feature Extraction and User Clustering Based on Real-World Data from Independent Smart Meters of Residential Electric Vehicle Users," Energies, MDPI, vol. 18(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:873-:d:1589619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jae D., 2019. "Insights into residential EV charging behavior using energy meter data," Energy Policy, Elsevier, vol. 129(C), pages 610-618.
    2. Yuqiu Deng & Zihao Jiao & Mengqi Li & Lun Ran, 2022. "On the Value of Orderly Charging in Improving Power Grid Resilience," Lecture Notes in Operations Research, in: Robin Qiu & Wai Kin Victor Chan & Weiwei Chen & Youakim Badr & Canrong Zhang (ed.), City, Society, and Digital Transformation, chapter 0, pages 263-275, Springer.
    3. Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    4. Alexandra Märtz & Uwe Langenmayr & Sabrina Ried & Katrin Seddig & Patrick Jochem, 2022. "Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real-World Data," Energies, MDPI, vol. 15(18), pages 1-26, September.
    5. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    6. Minseok Jang & Hyun-Cheol Jeong & Taegon Kim & Sung-Kwan Joo, 2021. "Load Profile-Based Residential Customer Segmentation for Analyzing Customer Preferred Time-of-Use (TOU) Tariffs," Energies, MDPI, vol. 14(19), pages 1-12, September.
    7. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    8. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pei & Ma, Zhenliang, 2024. "Unveiling electric vehicle (EV) charging patterns and their transformative role in electricity balancing and delivery: Insights from real-world data in Sweden," Renewable Energy, Elsevier, vol. 236(C).
    2. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    3. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    4. Dabirian, Sanam & Miller, Clayton & Adli, Alireza & Eicker, Ursula, 2024. "Gaussian-based plug load profile prediction in non-residential buildings archetype," Applied Energy, Elsevier, vol. 374(C).
    5. Fu, Zhi & Liu, Xiaochen & Zhang, Ji & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2025. "Orderly solar charging of electric vehicles and its impact on charging behavior: A year-round field experiment," Applied Energy, Elsevier, vol. 381(C).
    6. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    7. Wan, Yuchun & He, Zhenggang & Gao, Yufan & Xue, Yujia, 2024. "Long-haul truck charging planning problem considering time flexibility and energy flexibility," Energy, Elsevier, vol. 306(C).
    8. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    9. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    10. Araujo-Vizuete, Gabriela & Robalino-López, Andrés & Mena-Nieto, Ángel, 2025. "Decoding urban energy use variability: A bottom-up approach in Ecuador," Energy, Elsevier, vol. 327(C).
    11. Chen, Siliang & Liang, Xinbin & Liu, Ying & Li, Xilin & Jin, Xinqiao & Du, Zhimin, 2025. "Customized large-scale model for human-AI collaborative operation and maintenance management of building energy systems," Applied Energy, Elsevier, vol. 393(C).
    12. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    13. Do-Hyeon Ryu & Ryu-Hee Kim & Seung-Hyun Choi & Kwang-Jae Kim & Young Myoung Ko & Young-Jin Kim & Minseok Song & Dong Gu Choi, 2020. "Utilizing Electricity Consumption Data to Assess the Noise Discomfort Caused by Electrical Appliances between Neighbors: A Case Study of a Campus Apartment Building," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    14. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    15. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    16. Quintero Fuentes, Abel & Hickman, Mark & Whitehead, Jake, 2025. "Zone substations' readiness to embrace electric vehicle adoption: Brisbane case study," Energy, Elsevier, vol. 322(C).
    17. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    18. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    19. Toni Alex Reis Borges & Filipe Cardoso Brito & Rafael Guimarães Oliveira dos Santos & Paulo de Tarso Nascimento & Celso Barreto da Silva & Roberta Mota Panizio & Hugo Saba & Aloísio Santos Nascimento , 2025. "Smart Technologies Applied in Microgrids of Renewable Energy Sources: A Systematic Review," Energies, MDPI, vol. 18(11), pages 1-20, May.
    20. Li, Yujing & Zhang, Zhisheng & Xing, Qiang, 2025. "Real-time online charging control of electric vehicle charging station based on a multi-agent deep reinforcement learning," Energy, Elsevier, vol. 319(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:873-:d:1589619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.