IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925008992.html
   My bibliography  Save this article

Customized large-scale model for human-AI collaborative operation and maintenance management of building energy systems

Author

Listed:
  • Chen, Siliang
  • Liang, Xinbin
  • Liu, Ying
  • Li, Xilin
  • Jin, Xinqiao
  • Du, Zhimin

Abstract

Artificial intelligence (AI) is becoming an integral part for operation and maintenance (O&M) management, propelling the low-carbon transition of building energy systems. However, as the users of building energy systems, human beings are detached from the decision-making loop of AI, which leads to the suboptimal performance for O&M tasks in practical applications. To this end, we proposed a customized large-scale model for human-AI collaborative O&M management in building energy systems. The human-AI collaboration mechanism is characterized by humans providing the domain knowledge and specialized tools to guide AI while AI performing tasks to serve human needs. Specifically, the few-shot learning has been utilized in prompt engineering for the customized large-scale model to route various O&M tasks to corresponding solution paths: direct response, retrieving knowledge or invoking tools, which increases the accuracy of task routing from 73.7 % to 90.3 %. For specialized O&M tasks requiring domain knowledge, the multiple semantic levels of energy-specific knowledge are extracted by recursive clustering and integrated into the customized large-scale model by retrieval-augmented generation. The expert questionnaire indicates that the customized large-scale model outperforms ChatGPT-4o in 84 % of survey questions and generates more accurate and concise responses than GLM-4-9B. For complex O&M tasks requiring modeling and computation, the customized large-scale model is integrated with the specialized tools through data-structuring transformation aided by self-supervised reconstruction. The experimental test indicates that the accuracy of the customized large-scale model for fault diagnosis is 96.3 %, which outperforms general large-scale models by over 50 %. Our study will contribute to the human-AI collaboration for more efficient and safety O&M management, thereby accelerating the pace towards net zero emissions in building energy systems.

Suggested Citation

  • Chen, Siliang & Liang, Xinbin & Liu, Ying & Li, Xilin & Jin, Xinqiao & Du, Zhimin, 2025. "Customized large-scale model for human-AI collaborative operation and maintenance management of building energy systems," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008992
    DOI: 10.1016/j.apenergy.2025.126169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jian & Zhang, Chaobo & Lu, Jie & Zhao, Yang, 2025. "Domain-specific large language models for fault diagnosis of heating, ventilation, and air conditioning systems by labeled-data-supervised fine-tuning," Applied Energy, Elsevier, vol. 377(PA).
    2. Du, Zhimin & Liang, Xinbin & Chen, Siliang & Zhu, Xu & Chen, Kang & Jin, Xinqiao, 2023. "Knowledge-infused deep learning diagnosis model with self-assessment for smart management in HVAC systems," Energy, Elsevier, vol. 263(PD).
    3. Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
    4. Guo, Fangzhou & Ham, Sang woo & Kim, Donghun & Moon, Hyeun Jun, 2025. "Deep reinforcement learning control for co-optimizing energy consumption, thermal comfort, and indoor air quality in an office building," Applied Energy, Elsevier, vol. 377(PA).
    5. Li, Guannan & Chen, Liang & Liu, Jiangyan & Fang, Xi, 2023. "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis," Energy, Elsevier, vol. 263(PD).
    6. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
    7. Zhang, Boyan & Rezgui, Yacine & Luo, Zhiwen & Zhao, Tianyi, 2024. "Fault detection research on novel transfer learning-based method for cross-condition, cross-system and cross-operation in public building HVAC sensors," Energy, Elsevier, vol. 313(C).
    8. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    9. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    10. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    11. Wang, Xiangwei & Wang, Peng & Huang, Renke & Zhu, Xiuli & Arroyo, Javier & Li, Ning, 2025. "Safe deep reinforcement learning for building energy management," Applied Energy, Elsevier, vol. 377(PA).
    12. Chen, Siliang & Ge, Wei & Liang, Xinbin & Jin, Xinqiao & Du, Zhimin, 2024. "Lifelong learning with deep conditional generative replay for dynamic and adaptive modeling towards net zero emissions target in building energy system," Applied Energy, Elsevier, vol. 353(PB).
    13. Lynn H. Kaack & Priya L. Donti & Emma Strubell & George Kamiya & Felix Creutzig & David Rolnick, 2022. "Aligning artificial intelligence with climate change mitigation," Nature Climate Change, Nature, vol. 12(6), pages 518-527, June.
    14. Aguilar, J. & Garces-Jimenez, A. & R-Moreno, M.D. & García, Rodrigo, 2021. "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Jiang, Gang & Ma, Zhihao & Zhang, Liang & Chen, Jianli, 2024. "EPlus-LLM: A large language model-based computing platform for automated building energy modeling," Applied Energy, Elsevier, vol. 367(C).
    16. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Chen, Siliang & Liang, Xinbin & Zhang, Zheming & Zheng, Fei & Jin, Xinqiao & Du, Zhimin, 2025. "A general energy-aware framework with multi-modal information and multi-task coordination for smart management towards net-zero emissions in energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    3. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    4. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    6. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    7. Zhang, Boyan & Rezgui, Yacine & Luo, Zhiwen & Zhao, Tianyi, 2024. "Fault detection research on novel transfer learning-based method for cross-condition, cross-system and cross-operation in public building HVAC sensors," Energy, Elsevier, vol. 313(C).
    8. Chen, Siliang & Ge, Wei & Liang, Xinbin & Jin, Xinqiao & Du, Zhimin, 2024. "Lifelong learning with deep conditional generative replay for dynamic and adaptive modeling towards net zero emissions target in building energy system," Applied Energy, Elsevier, vol. 353(PB).
    9. Zhang, Chaobo & Li, Junyang & Zhao, Yang & Li, Tingting & Chen, Qi & Zhang, Xuejun & Qiu, Weikang, 2021. "Problem of data imbalance in building energy load prediction: Concept, influence, and solution," Applied Energy, Elsevier, vol. 297(C).
    10. Zhang, Jian & Zhang, Chaobo & Lu, Jie & Zhao, Yang, 2025. "Domain-specific large language models for fault diagnosis of heating, ventilation, and air conditioning systems by labeled-data-supervised fine-tuning," Applied Energy, Elsevier, vol. 377(PA).
    11. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    12. Ren, Zhengxiong & Han, Hua & Cui, Xiaoyu & Lu, Hailong & Luo, Mingwen, 2023. "Novel data-pulling-based strategy for chiller fault diagnosis in data-scarce scenarios," Energy, Elsevier, vol. 279(C).
    13. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    14. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    15. Wang, Zhanwei & Qin, Yijie & Kong, Yifan & Wang, Lin & Leng, Qiang & Zhang, Chunxiao, 2025. "Advanced fault detection, diagnosis and prognosis in HVAC systems: Lifecycle insight, key challenges, and promising approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
    16. Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
    17. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    19. Lu, Jie & Zhang, Chaobo & Li, Junyang & Zhao, Yang & Qiu, Weikang & Li, Tingting & Zhou, Kai & He, Jianing, 2022. "Graph convolutional networks-based method for estimating design loads of complex buildings in the preliminary design stage," Applied Energy, Elsevier, vol. 322(C).
    20. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.