Prediction Accuracy of Stackelberg Game Model of Electricity Price in Smart Grid Power Market Environment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
- Michael Kostmann & Wolfgang K. Härdle, 2019.
"Forecasting in Blockchain-Based Local Energy Markets,"
Energies, MDPI, vol. 12(14), pages 1-27, July.
- Kostmann, Michael & Härdle, Wolfgang Karl, 2019. "Forecasting in Blockchain-based Local Energy Markets," IRTG 1792 Discussion Papers 2019-014, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
- Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
- Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
- Ding, Yixing & Xu, Qingshan & Hao, Lili & Xia, Yuanxing, 2023. "A Stackelberg Game-based robust optimization for user-side energy storage configuration and power pricing," Energy, Elsevier, vol. 283(C).
- Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
- Agrawal, Rahul Kumar & Muchahary, Frankle & Tripathi, Madan Mohan, 2019. "Ensemble of relevance vector machines and boosted trees for electricity price forecasting," Applied Energy, Elsevier, vol. 250(C), pages 540-548.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bartosz Uniejewski, 2024.
"Regularization for electricity price forecasting,"
Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
- Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
- Nickelsen, Daniel & Müller, Gernot, 2025. "Bayesian hierarchical probabilistic forecasting of intraday electricity prices," Applied Energy, Elsevier, vol. 380(C).
- Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Lu, Renzhi & Bai, Ruichang & Huang, Yuan & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2021. "Data-driven real-time price-based demand response for industrial facilities energy management," Applied Energy, Elsevier, vol. 283(C).
- Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
- Finnah, Benedikt & Gönsch, Jochen & Ziel, Florian, 2022. "Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 301(2), pages 726-746.
- Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
- Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022.
"Short-term risk management of electricity retailers under rising shares of decentralized solar generation,"
Energy Economics, Elsevier, vol. 109(C).
- Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2021. "Short-term risk management for electricity retailers under rising shares of decentralized solar generation," Working Paper Series in Production and Energy 57, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
- Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
- Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
- Silvia Golia & Luigi Grossi & Matteo Pelagatti, 2022. "Machine Learning Models and Intra-Daily Market Information for the Prediction of Italian Electricity Prices," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
- Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023.
"Distributional neural networks for electricity price forecasting,"
Energy Economics, Elsevier, vol. 125(C).
- Grzegorz Marcjasz & Micha{l} Narajewski & Rafa{l} Weron & Florian Ziel, 2022. "Distributional neural networks for electricity price forecasting," Papers 2207.02832, arXiv.org, revised Dec 2022.
- Jiang, He & Dong, Yawei & Dong, Yao & Wang, Jianzhou, 2025. "Probabilistic electricity price forecasting by integrating interpretable model," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
- Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
- Demir, Sumeyra & Stappers, Bart & Kok, Koen & Paterakis, Nikolaos G., 2022. "Statistical arbitrage trading on the intraday market using the asynchronous advantage actor–critic method," Applied Energy, Elsevier, vol. 314(C).
- Ciaran O’Connor & Mohamed Bahloul & Steven Prestwich & Andrea Visentin, 2025. "A Review of Electricity Price Forecasting Models in the Day-Ahead, Intra-Day, and Balancing Markets," Energies, MDPI, vol. 18(12), pages 1-40, June.
- Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
More about this item
Keywords
smart grid; blockchain; electricity price forecasting; Stackelberg model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:501-:d:1573831. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.