IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p353-d1567372.html
   My bibliography  Save this article

Experimental and Simulation Study on Reducing the Liquid Film and Improving the Performance of a Carbon-Neutral Methanol Engine

Author

Listed:
  • Yongzhi Li

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Zhi Zhang

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Haifeng Liu

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Weide Chang

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Zanqiao Shu

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Hu Wang

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Zunqing Zheng

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Hua Zhao

    (Center for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UK)

  • Xinyan Wang

    (Center for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UK)

  • Mingfa Yao

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
    School of Civil and Transportation Engineering, Qinghai Minzu University, Xining 810000, China)

Abstract

Methanol is a potential carbon-neutral fuel. It has a high latent heat of vaporization, making it difficult to achieve evaporation and mixing, and it is prone to forming a liquid film, which in turn affects engine performance. To reduce the liquid film and improve engine performance, this work investigates the influence mechanism of injection strategies on the generation of liquid films in the intake port and cylinder of an inline 6-cylinder port fuel injection (PFI) spark-ignition (SI) methanol engine and further explores the optimization scheme for improving engine performance. The results show that the end of injection (EOI) influences the methanol evaporation rate and the methanol–air mixing process, thereby determining the liquid film deposition, mixture distribution, and temperature distribution in the cylinder. As the EOI advances, the higher methanol evaporation rate during the intake process reduces the amount of methanol droplets and the deposition of a liquid film in the cylinder. The in-cylinder temperature is relatively high, while the mixture inhomogeneity slightly increases. As the EOI increases from 170 °CA to 360 °CA, the higher in-cylinder temperature and properly stratified mixture accelerate the early and middle stages of combustion, shorten the ignition delay, advance the center of combustion, and improve the brake thermal efficiency (BTE). However, further advancing the EOI results in the BTE remaining basically unchanged. Optimized injection timing can enhance the BTE by 1.4% to 2.4% under various load conditions. The increase in the EOI contributes to the reduction of HC emissions due to the weakening of the crevice effect with lower masses of methanol droplets and liquid film in the cylinder, while the increase in mixture inhomogeneity leads to an increase in CO emissions. In general, controlling the EOI at around 360 °CA can maintain relatively low CO emissions under various load conditions, while significantly reducing HC emissions by 71.2–76.4% and improving the BTE.

Suggested Citation

  • Yongzhi Li & Zhi Zhang & Haifeng Liu & Weide Chang & Zanqiao Shu & Hu Wang & Zunqing Zheng & Hua Zhao & Xinyan Wang & Mingfa Yao, 2025. "Experimental and Simulation Study on Reducing the Liquid Film and Improving the Performance of a Carbon-Neutral Methanol Engine," Energies, MDPI, vol. 18(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:353-:d:1567372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/353/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/353/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silvana Di Iorio & Francesco Catapano & Agnese Magno & Paolo Sementa & Bianca Maria Vaglieco, 2023. "The Potential of Ethanol/Methanol Blends as Renewable Fuels for DI SI Engines," Energies, MDPI, vol. 16(6), pages 1-15, March.
    2. Pellegrini, Laura A. & Soave, Giorgio & Gamba, Simone & Langè, Stefano, 2011. "Economic analysis of a combined energy–methanol production plant," Applied Energy, Elsevier, vol. 88(12), pages 4891-4897.
    3. Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
    4. Federico Ricci & Francesco Mariani & Stefano Papi & Jacopo Zembi & Michele Battistoni & Carlo Nazareno Grimaldi, 2024. "The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine," Energies, MDPI, vol. 17(7), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miaomiao Zhang & Jianbin Cao, 2025. "Effects of Two-Stage Injection on Combustion and Particulate Emissions of a Direct Injection Spark-Ignition Engine Fueled with Methanol–Gasoline Blends," Energies, MDPI, vol. 18(2), pages 1-14, January.
    2. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    3. Oleg Bazaluk & Valerii Havrysh & Vitalii Nitsenko & Tomas Baležentis & Dalia Streimikiene & Elena A. Tarkhanova, 2020. "Assessment of Green Methanol Production Potential and Related Economic and Environmental Benefits: The Case of China," Energies, MDPI, vol. 13(12), pages 1-25, June.
    4. Prapatsorn Borisut & Aroonsri Nuchitprasittichai, 2020. "Process Configuration Studies of Methanol Production via Carbon Dioxide Hydrogenation: Process Simulation-Based Optimization Using Artificial Neural Networks," Energies, MDPI, vol. 13(24), pages 1-13, December.
    5. Muhammad Usman & Muhammad Ali Ijaz Malik & Tariq Nawaz Chaudhary & Fahid Riaz & Sohaib Raza & Muhammad Abubakar & Farrukh Ahmad Malik & Hafiz Muhammad Ahmad & Yasser Fouad & Muhammad Mujtaba Abbas & M, 2023. "Comparative Assessment of Ethanol and Methanol–Ethanol Blends with Gasoline in SI Engine for Sustainable Development," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    6. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
    7. Wolfersdorf, Christian & Boblenz, Kristin & Pardemann, Robert & Meyer, Bernd, 2015. "Syngas-based annex concepts for chemical energy storage and improving flexibility of pulverized coal combustion power plants," Applied Energy, Elsevier, vol. 156(C), pages 618-627.
    8. Narvaez, A. & Chadwick, D. & Kershenbaum, L., 2014. "Small-medium scale polygeneration systems: Methanol and power production," Applied Energy, Elsevier, vol. 113(C), pages 1109-1117.
    9. Yang, Yu & Liu, Jing & Shen, Weifeng & Li, Jie & Chien, I-Lung, 2018. "High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming," Energy, Elsevier, vol. 158(C), pages 820-829.
    10. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    11. Cesur, Idris, 2022. "Investigation of the effects of water injection into an SI engine running on M15 methanol fuel on engine performance and exhaust emissions," Energy, Elsevier, vol. 261(PA).
    12. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    14. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    15. Federico Ricci & Massimiliano Avana & Francesco Mariani, 2025. "Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines," Energies, MDPI, vol. 18(2), pages 1-23, January.
    16. Farhat, Karim & Reichelstein, Stefan, 2016. "Economic value of flexible hydrogen-based polygeneration energy systems," Applied Energy, Elsevier, vol. 164(C), pages 857-870.
    17. Wang, Yongjian & Long, Wuqiang & Dong, Pengbo & Tian, Hua & Wang, Yang & Xie, Chunyang & Tang, Yuanyou & Lu, Mingfei & Zhang, Weiqi, 2024. "Experimental investigation of knock control criterion considering power output loss for a PFI SI methanol marine engine," Energy, Elsevier, vol. 303(C).
    18. Kohl, Thomas & Laukkanen, Timo & Järvinen, Mika & Fogelholm, Carl-Johan, 2013. "Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant," Applied Energy, Elsevier, vol. 107(C), pages 124-134.
    19. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    20. Kirankumar, K.R. & Kumar, G.N. & Kamath, Nagaraja & Gangadharan, K.V., 2024. "Experimental investigation and optimization of performance, emission, and vibro-acoustic parameters of SI engine fueled with n-propanol and gasoline blends using ANN-GA coupled with NSGA3-modified TOP," Energy, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:353-:d:1567372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.