IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p266-d1563307.html
   My bibliography  Save this article

Flexible Reconfiguration for Optimal Operation of Distribution Network Under Renewable Generation and Load Uncertainty

Author

Listed:
  • Behzad Esmaeilnezhad

    (Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

  • Hossein Amini

    (The Bradly Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA)

  • Reza Noroozian

    (Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

  • Saeid Jalilzadeh

    (Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

Abstract

The primary objective when operating a distribution network is to minimize operating costs while taking technical constraints into account. Minimizing the operational costs is difficult when there is a high penetration of renewable resources and variability of loads, which introduces uncertainty. In this paper, a flexible, dynamic reconfiguration model is developed that enables a distribution network to minimize operating costs on an hourly basis. The model fitness function is to minimize the system costs, including power loss, voltage deviation, purchased power from the upstream network, renewable generation, and switching costs. The uncertainty of the load and generation from renewable energies is planned to use their probability density functions via a scenario-based approach. The suggested optimization problem is solved using a metaheuristic approach based on the coati optimization algorithm (COA) due to the nonlinearity and non-convexity of the problem. To evaluate the performance of the presented approach, it is validated on the IEEE 33-bus radial system and TPC 83-bus real system. The simulation results show the impact of dynamic reconfiguration on reducing operation costs. It is found that dynamic reconfiguration is an efficient solution for reducing power losses and total energy drawn from the upstream network by increasing the number of switching operations.

Suggested Citation

  • Behzad Esmaeilnezhad & Hossein Amini & Reza Noroozian & Saeid Jalilzadeh, 2025. "Flexible Reconfiguration for Optimal Operation of Distribution Network Under Renewable Generation and Load Uncertainty," Energies, MDPI, vol. 18(2), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:266-:d:1563307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehsan, Ali & Yang, Qiang, 2019. "State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review," Applied Energy, Elsevier, vol. 239(C), pages 1509-1523.
    2. kianmehr, Ehsan & Nikkhah, Saman & Rabiee, Abbas, 2019. "Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives," Renewable Energy, Elsevier, vol. 132(C), pages 471-485.
    3. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, June.
    4. Mohammed Alqahtani & Ponnusamy Marimuthu & Veerasamy Moorthy & B. Pangedaiah & Ch. Rami Reddy & M. Kiran Kumar & Muhammad Khalid, 2023. "Investigation and Minimization of Power Loss in Radial Distribution Network Using Gray Wolf Optimization," Energies, MDPI, vol. 16(12), pages 1-15, June.
    5. Hossein Amini & Ali Mehrizi-Sani & Reza Noroozian, 2024. "Passive Islanding Detection of Inverter-Based Resources in a Noisy Environment," Energies, MDPI, vol. 17(17), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shunjiang Wang & Peng Qiu & Yiwen Feng & Xu Jin, 2025. "Optimal Configuration Strategy of PV and ESS for Enhancing the Regulation Capability of Electric Vehicles Under the Scenario of Orderly Power Utilization," Energies, MDPI, vol. 18(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Vivienne Hui & Dong, Zhaoyang & Meng, Ke, 2020. "Integrated distribution expansion planning considering stochastic renewable energy resources and electric vehicles," Applied Energy, Elsevier, vol. 278(C).
    2. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    3. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    5. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    6. Hernán Gómez-Villarreal & Miguel Carrión & Ruth Domínguez, 2019. "Optimal Management of Combined-Cycle Gas Units with Gas Storage under Uncertainty," Energies, MDPI, vol. 13(1), pages 1-29, December.
    7. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    8. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
    9. Thibaut Th'eate & S'ebastien Mathieu & Damien Ernst, 2020. "An Artificial Intelligence Solution for Electricity Procurement in Forward Markets," Papers 2006.05784, arXiv.org, revised Dec 2020.
    10. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    11. Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.
    12. Ali Reza Kheirkhah & Carlos Frederico Meschini Almeida & Nelson Kagan & Jonatas Boas Leite, 2023. "Optimal Probabilistic Allocation of Photovoltaic Distributed Generation: Proposing a Scenario-Based Stochastic Programming Model," Energies, MDPI, vol. 16(21), pages 1-18, October.
    13. Stephan Nagl & Michaela Fürsch & Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, , vol. 34(4), pages 151-180, October.
    14. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    15. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    16. Homa Rashidizadeh-Kermani & Hamid Reza Najafi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets," Energies, MDPI, vol. 11(9), pages 1-20, September.
    17. Ghaffari, Reza & Venkatesh, Bala, 2015. "Network constrained model for options based reserve procurement by wind generators using binomial tree," Renewable Energy, Elsevier, vol. 80(C), pages 348-358.
    18. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    19. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    20. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:266-:d:1563307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.