IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4762-d1744313.html
   My bibliography  Save this article

Experimental Study and Calculation of Condensation Heat Transfer in Flue Gas of Gas-Fired Boiler

Author

Listed:
  • Ziyang Cheng

    (Huaneng Clean Energy Research Institute, Beijing 100083, China)

  • Shuo Peng

    (Huaneng Clean Energy Research Institute, Beijing 100083, China)

  • Haofei Cai

    (Huaneng Clean Energy Research Institute, Beijing 100083, China)

  • Ye Bai

    (Huaneng Clean Energy Research Institute, Beijing 100083, China)

  • Bingfeng Zhou

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Xiaoju Wang

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Shifeng Deng

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The wide application of natural gas will help to achieve the goal of double carbon. The potential of energy saving and carbon reduction after deep condensation of a natural gas flue gas can reach as much as 10~12%. In this paper, the interplay between sensible and latent heat transfer in the process of condensation heat transfer was explored by adjusting the flue gas temperature, relative humidity, cooling water temperature, and other parameters entering the condensation heat exchanger by the condensation heat transfer experimental platform of a gas-fired boiler. The Ln number presents the proportion of water vapor condensation in flue gas, and the P number shows the total amount of water vapor condensation. The increase in Ln and p values promotes the enhancement of water vapor condensation, and the condensation heat transfer coefficient can reach about three to eight times that of a sensible heat transfer coefficient. As the Ln number increases from 0 to 0.35, the promoting effect of sensible heat is enhanced, up to a maximum of 2.5 times. However, from 0.35 to 0.75, the promotion gradually weakens. When the Ln number exceeds 0.75, sensible heat transfer begins to be suppressed, with a minimum coefficient of 0.7. The correction term of the sensible and latent heat transfer coefficient is added to the existing empirical correlation of pure convection heat transfer, which is applicable to various heat exchanger structures and verified by experiments. The micro-element superposition calculation method of the condensing heat exchanger is proposed to realize the digital accurate design of the condensing heat exchanger, which lays the foundation for the extensive promotion and application of the flue gas condensing heat exchanger.

Suggested Citation

  • Ziyang Cheng & Shuo Peng & Haofei Cai & Ye Bai & Bingfeng Zhou & Xiaoju Wang & Shifeng Deng, 2025. "Experimental Study and Calculation of Condensation Heat Transfer in Flue Gas of Gas-Fired Boiler," Energies, MDPI, vol. 18(17), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4762-:d:1744313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
    2. Sohrabi, Arvin & Liu, Shuli & Cuce, Erdem & Shen, Yongliang & Khan, Sheher Yar & Kumar, Mahesh, 2025. "Utilization of low-grade thermal energy for residential applications: A review of the existing and potential technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
    3. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    4. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    5. Zhang, Qunli & Niu, Yu & Yang, Xiaohu & Sun, Donghan & Xiao, Xin & Shen, Qi & Wang, Gang, 2020. "Experimental study of flue gas condensing heat recovery synergized with low NOx emission system," Applied Energy, Elsevier, vol. 269(C).
    6. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
    7. Shahzad, Muhammad Kashif & Ding, Yaqi & Zhang, Hao & Jamil, Shah Rukh & Chen, Guangming & Zhao, Pei & Dong, Yong, 2025. "Performance evaluation of a novel hybrid open absorption heat pump for efficient flue gas heat recovery at high return water temperatures," Energy, Elsevier, vol. 329(C).
    8. Satyavada, Harish & Baldi, Simone, 2018. "Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation," Energy, Elsevier, vol. 142(C), pages 121-129.
    9. Lin, Chun-Cheng & Zhang, Shi-Yu & Chou, Yu-Lun & Liu, Wan-Yu, 2025. "Energy management scheduling of a smart factory with carbon capture and storage, carbon emission quota cap-and-trade, and green energy trading," Energy, Elsevier, vol. 333(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haichao & Wu, Xiaozhou & Liu, Zheyi & Granlund, Katja & Lahdelma, Risto & Li, Ji & Teppo, Esa & Yu, Li & Duamu, Lin & Li, Xiangli & Haavisto, Ilkka, 2021. "Waste heat recovery mechanism for coal-fired flue gas in a counter-flow direct contact scrubber," Energy, Elsevier, vol. 237(C).
    2. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
    3. Deng, Shifeng & Zhang, Haoyuan & Li, Guangying & Qu, Teng & Shao, Huaishuang & Zhao, Qinxin, 2025. "Experimental study and optimization analysis of vapor compression heat pump coupled with gas boiler," Energy, Elsevier, vol. 314(C).
    4. Huang, Ransisi & Mahvi, Allison & James, Nelson & Kozubal, Eric & Woods, Jason, 2024. "Evaluation of phase change thermal storage in a cascade heat pump," Applied Energy, Elsevier, vol. 359(C).
    5. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Tovazhnyanskyy, Leonid & Klochok, Eugeny & Kapustenko, Petro, 2023. "Estimating parameters of plate heat exchanger for condensation of steam from mixture with air as a component of heat exchanger network," Energy, Elsevier, vol. 283(C).
    6. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
    7. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Klochock, Eugeny & Kapustenko, Petro, 2023. "The effect of plate size and corrugation pattern on plate heat exchanger performance in specific conditions of steam-air mixture condensation," Energy, Elsevier, vol. 263(PC).
    8. Ma, Yuxin & Gao, Enyuan & Zhang, Xiaosong & Huang, Shifang, 2024. "Parametric analysis and design optimization of a fully open absorption heat pump for heat and water recovery of flue gas," Applied Energy, Elsevier, vol. 375(C).
    9. Yang, Lingxiao & Wang, Xin & Xu, Bo & Chen, Zhenqian, 2024. "Characteristic analysis and performance optimization of a transcritical CO2 heat pump for high-temperature heating: An experimental study," Renewable Energy, Elsevier, vol. 237(PB).
    10. Xiaowei Hu & Chenyang Shi & Yong Liu & Xingyu Fu & Tianyao Ma & Mingsen Jin, 2024. "Advanced Exergy and Exergoeconomic Analysis of Cascade High-Temperature Heat Pump System for Recovery of Low-Temperature Waste Heat," Energies, MDPI, vol. 17(5), pages 1-17, February.
    11. Tymoteusz Miller & Irmina Durlik & Ewelina Kostecka & Polina Kozlovska & Andrzej Jakubowski & Adrianna Łobodzińska, 2024. "Waste Heat Utilization in Marine Energy Systems for Enhanced Efficiency," Energies, MDPI, vol. 17(22), pages 1-29, November.
    12. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    13. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    14. Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).
    15. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    16. Luo, Ding & Li, Zheng & Yang, Shuo & Chen, Hao, 2025. "Improved performance of the thermoelectric generator by combining vapor chambers and circular fins," Energy, Elsevier, vol. 320(C).
    17. Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
    18. Zhang, Hongsheng & Liu, Xingang & Hao, Ruijun & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance study on gas-steam cogeneration systems with different configurations based on condensed waste heat utilization," Energy, Elsevier, vol. 250(C).
    19. Lianbo Mu & Suilin Wang & Guichang Liu & Junhui Lu & Yuncheng Lan & Liqiu Zhao & Jincheng Liu, 2023. "On-Site Experimental Study on Low-Temperature Deep Waste Heat Recovery of Actual Flue Gas from the Reformer of Hydrogen Production," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    20. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4762-:d:1744313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.