Experimental study and optimization analysis of vapor compression heat pump coupled with gas boiler
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.134189
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Westerlund, Lars & Hermansson, Roger & Fagerström, Jonathan, 2012. "Flue gas purification and heat recovery: A biomass fired boiler supplied with an open absorption system," Applied Energy, Elsevier, vol. 96(C), pages 444-450.
- Hua, Lingji & Wang, Ruzhu, 2022. "An exergy analysis and parameter optimization of solid desiccant heat pumps recovering the condensation heat for desiccant regeneration and heat transfer enhancement," Energy, Elsevier, vol. 238(PB).
- Zhang, Qunli & Niu, Yu & Yang, Xiaohu & Sun, Donghan & Xiao, Xin & Shen, Qi & Wang, Gang, 2020. "Experimental study of flue gas condensing heat recovery synergized with low NOx emission system," Applied Energy, Elsevier, vol. 269(C).
- Hu, Bin & Liu, Hua & Jiang, Jiatong & Zhang, Zhiping & Li, Hongbo & Wang, R.Z., 2022. "Ten megawatt scale vapor compression heat pump for low temperature waste heat recovery: Onsite application research," Energy, Elsevier, vol. 238(PB).
- Costa, Andrea & Bakhtiari, Bahador & Schuster, Sebastian & Paris, Jean, 2009. "Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency," Energy, Elsevier, vol. 34(3), pages 254-260.
- Ziemele, Jelena & Volkova, Anna & Latõšov, Eduard & Murauskaitė, Lina & Džiuvė, Vytautas, 2023. "Comparative assessment of heat recovery from treated wastewater in the district heating systems of the three capitals of the Baltic countries," Energy, Elsevier, vol. 280(C).
- Zhang, Wei & Wang, Suilin & Mu, Lianbo & Jamshidnia, Hamid & Zhao, Xudong, 2022. "Investigation of the forced-convection heat-transfer in the boiler flue-gas heat recovery units employing the real-time measured database," Energy, Elsevier, vol. 238(PA).
- Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
- Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
- Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
- Arnaudo, Monica & Dalgren, Johan & Topel, Monika & Laumert, Björn, 2021. "Waste heat recovery in low temperature networks versus domestic heat pumps - A techno-economic and environmental analysis," Energy, Elsevier, vol. 219(C).
- van de Bor, D.M. & Infante Ferreira, C.A. & Kiss, Anton A., 2015. "Low grade waste heat recovery using heat pumps and power cycles," Energy, Elsevier, vol. 89(C), pages 864-873.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Uche, Javier & Jamal-Abad, Milad Tajik & Martínez-Gracia, Amaya, 2025. "Evaluating the efficiency, economics, and environmental impact of hybrid heat pumps assisted by biomass boilers for Spanish climate zones," Energy, Elsevier, vol. 325(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
- Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
- Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
- Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
- Dzierwa, Piotr & Trojan, Marcin & Peret, Patryk & Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Wrobel, Wojciech & Bator, Jakub, 2024. "Technological and economical analysis of the heat recovery system from flue gas in a thermal waste treatment plant," Energy, Elsevier, vol. 307(C).
- Lianbo Mu & Suilin Wang & Guichang Liu & Junhui Lu & Yuncheng Lan & Liqiu Zhao & Jincheng Liu, 2023. "On-Site Experimental Study on Low-Temperature Deep Waste Heat Recovery of Actual Flue Gas from the Reformer of Hydrogen Production," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
- Yang, Sheng & Liang, Jianeng & Yang, Siyu & Qian, Yu, 2016. "A novel cascade refrigeration process using waste heat and its application to coal-to-SNG," Energy, Elsevier, vol. 115(P1), pages 486-497.
- Huang, Ransisi & Mahvi, Allison & James, Nelson & Kozubal, Eric & Woods, Jason, 2024. "Evaluation of phase change thermal storage in a cascade heat pump," Applied Energy, Elsevier, vol. 359(C).
- Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
- Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Guo, Siyi & Wei, Ziqing & Yin, Yaling & Zhai, Xiaoqiang, 2025. "A physics-guided RNN-KAN for multi-step prediction of heat pump operation states," Energy, Elsevier, vol. 320(C).
- Socci, Luca & Rocchetti, Andrea & Verzino, Antonio & Zini, Andrea & Talluri, Lorenzo, 2024. "Enhancing third-generation district heating networks with data centre waste heat recovery: analysis of a case study in Italy," Energy, Elsevier, vol. 313(C).
- Li, Gang & Du, Yuqing, 2018. "Performance investigation and economic benefits of new control strategies for heat pump-gas fired water heater hybrid system," Applied Energy, Elsevier, vol. 232(C), pages 101-118.
- Xuebin Ma & Junfeng Li & Yucheng Ren & Reaihan E & Qiugang Wang & Jie Li & Sihui Huang & Mingguo Ma, 2022. "Performance and Economic Analysis of the Multi-Energy Complementary Heating System under Different Control Strategies in Cold Regions," Energies, MDPI, vol. 15(21), pages 1-17, November.
- Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
- Bakhtiari, Bahador & Fradette, Louis & Legros, Robert & Paris, Jean, 2010. "Opportunities for the integration of absorption heat pumps in the pulp and paper process," Energy, Elsevier, vol. 35(12), pages 4600-4606.
- Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
- Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
- Zhenying Zhang & Jiaqi Wang & Meiyuan Yang & Kai Gong & Mei Yang, 2022. "Environmental and Economic Analysis of Heating Solutions for Rural Residences in China," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
- Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039677. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.