IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225018225.html
   My bibliography  Save this article

Evaluating the efficiency, economics, and environmental impact of hybrid heat pumps assisted by biomass boilers for Spanish climate zones

Author

Listed:
  • Uche, Javier
  • Jamal-Abad, Milad Tajik
  • Martínez-Gracia, Amaya

Abstract

Hybrid air-water heat pump systems combine the efficiency of the former with the boiler backup system when external conditions are unsuitable. For the rural domestic sector, the use of biomass boilers as backup also allows the sustainable use of local natural resources. The appropriate choice of size for both units is a complex decision that depends not only on demand and climate but also on other parameters, such as the storage tank and the control strategy. Specifically with biomass boilers, this choice has not been sufficiently addressed in the scientific literature. For this reason, a dynamic model of this hybrid scheme has been created, the analysis of which has been carried out with energy, environmental and economic indicators. This model has been applied to a single-family home in three areas in Spain with a higher demand for heating than cooling and with different efficiency standards, comparing different sizes of inverter heat pump with commercial features to cover the required demand together with the boiler. With all the reservations given by the variability of the case studies analyzed, it can be stated that the approximate value of a heat pump with a nominal capacity of 60–70 % of the peak demand of the house is the most cost-effective option as it obtains the best combined seasonal performance, reduced environmental impact, lower operating costs and in its life cycle. With this design, relevant participation of the boiler is assured, contributing to low unitary emissions and allowing the heat pump to operate at its best efficiency, also reducing its number of starts and stops. Parameters such as greater storage or a lower pump stop temperature also improve its performance, within limits close to the reference situation for Spain, also considering its prices for biomass and electricity consumed.

Suggested Citation

  • Uche, Javier & Jamal-Abad, Milad Tajik & Martínez-Gracia, Amaya, 2025. "Evaluating the efficiency, economics, and environmental impact of hybrid heat pumps assisted by biomass boilers for Spanish climate zones," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018225
    DOI: 10.1016/j.energy.2025.136180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225018225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    2. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating," Energy, Elsevier, vol. 109(C), pages 248-259.
    3. Grzegorz Woroniak & Joanna Piotrowska-Woroniak & Anna Woroniak & Edyta Owczarek & Krystyna Giza, 2024. "Analysis of the Hybrid Power-Heating System in a Single-Family Building, along with Ecological Aspects of the Operation," Energies, MDPI, vol. 17(11), pages 1-24, May.
    4. Kozarcanin, S. & Hanna, R. & Staffell, I. & Gross, R. & Andresen, G.B., 2020. "Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe," Energy Policy, Elsevier, vol. 140(C).
    5. Deng, Shifeng & Zhang, Haoyuan & Li, Guangying & Qu, Teng & Shao, Huaishuang & Zhao, Qinxin, 2025. "Experimental study and optimization analysis of vapor compression heat pump coupled with gas boiler," Energy, Elsevier, vol. 314(C).
    6. Yıldız, Çağatay & Seçilmiş, Mustafa & Arıcı, Müslüm & Mert, Mehmet Selçuk & Nižetić, Sandro & Karabay, Hasan, 2023. "An experimental study on a solar-assisted heat pump incorporated with PCM based thermal energy storage unit," Energy, Elsevier, vol. 278(PB).
    7. Degelin, A. & Tassenoy, R. & Vieren, E. & Demeester, T. & T'Jollyn, I. & De Paepe, M., 2024. "Influence of supply temperature and booster technology on the energetic performance and levelized cost of heat of a district heating network with central heat pump," Energy, Elsevier, vol. 312(C).
    8. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    9. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    10. Gao, Jinshuang & Li, Sheng & Adnouni, M. & Huang, Yan & Yu, Meng & Zhao, Yazhou & Zhang, Xuejun, 2024. "Simulation study on thermal performance of solar coupled air source heat pump system with phase change heat storage in cold regions," Energy, Elsevier, vol. 308(C).
    11. Liu, Changchun & Han, Wei & Wang, Zefeng & Zhang, Na & Kang, Qilan & Liu, Meng, 2021. "Proposal and assessment of a new solar space heating system by integrating an absorption-compression heat pump," Applied Energy, Elsevier, vol. 294(C).
    12. Qu, Minglu & Pan, Dongmei & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part II: Modeling analysis," Applied Energy, Elsevier, vol. 91(1), pages 274-280.
    13. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.
    14. Qu, Minglu & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part I: Experiments," Applied Energy, Elsevier, vol. 91(1), pages 122-129.
    15. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Jelena Tihana & Hesham Ali & Jekaterina Apse & Janis Jekabsons & Dmitrijs Ivancovs & Baiba Gaujena & Andrei Dedov, 2023. "Hybrid Heat Pump Performance Evaluation in Different Operation Modes for Single-Family House," Energies, MDPI, vol. 16(20), pages 1-17, October.
    17. Pesola, Aki, 2023. "Cost-optimization model to design and operate hybrid heating systems – Case study of district heating system with decentralized heat pumps in Finland," Energy, Elsevier, vol. 281(C).
    18. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    2. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    3. Haihui Tan & Xiaofeng Zhang & Li Zhang & Tangfei Tao & Guanghua Xu, 2019. "Ultrasonic Guided Wave Phased Array Focusing Technology and Its Application to Defrosting Performance Improvement of Air-Source Heat Pumps," Energies, MDPI, vol. 12(16), pages 1-18, August.
    4. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    5. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    6. Han, Binglong & Xiong, Tong & Xu, Shijie & Liu, Guoqiang & Yan, Gang, 2022. "Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model," Energy, Elsevier, vol. 238(PA).
    7. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
    8. Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
    9. Song, Mengjie & Xia, Liang & Deng, Shiming, 2016. "A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting," Applied Energy, Elsevier, vol. 161(C), pages 268-278.
    10. Tan, Haihui & Xu, Guanghua & Tao, Tangfei & Sun, Xiaoqi & Yao, Wudong, 2015. "Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration," Applied Energy, Elsevier, vol. 158(C), pages 220-232.
    11. Zheng, Haikun & Ma, Chen & Fu, Dongyu & Sheng, Wei & Wang, Ruirui & Chen, Xiaozhuan & Song, Mengjie & Dang, Chaobin, 2025. "A review of defrosting methods in cold storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    12. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    13. Song, Mengjie & Deng, Shiming & Mao, Ning & Ye, Xianming, 2016. "An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 165(C), pages 371-382.
    14. Li, Jiaxu & Song, Qinglu & Wu, Wei & Wang, Dechang & Jiang, Xianguo & Zhou, Sai, 2025. "Energy, exergy, economic and environmental (4E) analysis of zeotropic mixture recuperative heat pump and vapor injection heat pump," Energy, Elsevier, vol. 317(C).
    15. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    16. Zhou, Dan & Zhang, Yi & Wu, Yuting & Wang, Yunfei & Zhang, Guanmin, 2024. "Research on gas-liquid interface parameters related to thermal performance of frost-free evaporator of air source heat pump," Renewable Energy, Elsevier, vol. 237(PB).
    17. Song, Mengjie & Deng, Shiming & Xia, Liang, 2014. "A semi-empirical modeling study on the defrosting performance for an air source heat pump unit with local drainage of melted frost from its three-circuit outdoor coil," Applied Energy, Elsevier, vol. 136(C), pages 537-547.
    18. Ma, Jiacheng & Kim, Donghun & Braun, James E. & Horton, W. Travis, 2023. "Development and validation of a dynamic modeling framework for air-source heat pumps under cycling of frosting and reverse-cycle defrosting," Energy, Elsevier, vol. 272(C).
    19. Jelena Tihana & Hesham Ali & Jekaterina Apse & Janis Jekabsons & Dmitrijs Ivancovs & Baiba Gaujena & Andrei Dedov, 2023. "Hybrid Heat Pump Performance Evaluation in Different Operation Modes for Single-Family House," Energies, MDPI, vol. 16(20), pages 1-17, October.
    20. Minglu, Qu & Rao, Zhang & Jianbo, Chen & Yuanda, Cheng & Xudong, Zhao & Tongyao, Zhang & Zhao, Li, 2020. "Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps," Renewable Energy, Elsevier, vol. 147(P1), pages 35-42.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.