IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4732-d1742878.html
   My bibliography  Save this article

Green Innovation in Energy Storage for Isolated Microgrids: A Monte Carlo Approach

Author

Listed:
  • Jake Elliot

    (School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Les Bowtell

    (School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Jason Brown

    (School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD 4000, Australia)

Abstract

Thursday Island, a remote administrative hub in Australia’s Torres Strait, exemplifies the socio-technical challenges of transitioning to sustainable energy amid diesel dependence and the intermittency of renewables. As Australia pursues Net Zero by 2050, innovative storage solutions are pivotal for enabling green innovation in isolated microgrids. This study evaluates Vanadium Redox Flow Batteries (VRFBs) and Lithium-Ion batteries as key enabling technologies, using a stochastic Monte Carlo simulation to assess their economic viability through Levelized Cost of Storage (LCOS), incorporating uncertainties in capital costs, operations, and performance over 20 years. Employing a stochastic Monte Carlo simulation with 10,000 iterations, this study provides a probabilistic assessment of LCOS, incorporating uncertainties in key parameters such as CAPEX, OPEX, efficiency, and discount rates, offering a novel, data-driven framework for evaluating storage viability in remote microgrids. Results indicate VRFBs’ superiority with a mean LCOS of 168.30 AUD/MWh versus 173.50 AUD/MWh for Lithium-Ion, driven by scalability, durability, and safety—attributes that address socio-economic barriers like high operational costs and environmental risks in tropical, off-grid settings. By framing VRFBs as an innovative green solution, this analysis highlights opportunities for new business models in remote energy sectors, such as reduced fossil fuel reliance (3.6 million litres diesel annually) and enhanced community resilience against energy poverty. It also underscores challenges, including capital uncertainties and policy needs for innovation uptake. This empirical case study contributes to the sustainable energy transition discourse, offering insights for policymakers on overcoming resistance to decarbonization in geographically constrained contexts, aligning with green innovation goals for systemic sustainability.

Suggested Citation

  • Jake Elliot & Les Bowtell & Jason Brown, 2025. "Green Innovation in Energy Storage for Isolated Microgrids: A Monte Carlo Approach," Energies, MDPI, vol. 18(17), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4732-:d:1742878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qusay Hassan & Imad Saeed Abdulrahman & Hayder M. Salman & Olushola Tomilayo Olapade & Marek Jaszczur, 2023. "Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System," Energies, MDPI, vol. 16(2), pages 1-20, January.
    2. Muhammed Samil Yesilyurt & Huseyin Ayhan Yavasoglu, 2023. "An All-Vanadium Redox Flow Battery: A Comprehensive Equivalent Circuit Model," Energies, MDPI, vol. 16(4), pages 1-14, February.
    3. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.
    4. Nathan Guignard & Christian Cristofari & Vincent Debusschere & Lauric Garbuio & Tina Le Mao, 2022. "Micro Pumped Hydro Energy Storage: Sketching a Sustainable Hybrid Solution for Colombian Off-Grid Communities," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    5. Prajwal S. M. Guruprasad & Emanuele Quaranta & Oscar E. Coronado-Hernández & Helena M. Ramos, 2023. "Hydropower Advantages over Batteries in Energy Storage of Off-Grid Systems: A Case Study," Energies, MDPI, vol. 16(17), pages 1-28, August.
    6. Jake Elliot & Jason Brown & Njabulo Mlilo & Les Bowtell, 2025. "Global Trends in Community Energy Storage: A Comprehensive Analysis of the Current and Future Direction," Sustainability, MDPI, vol. 17(5), pages 1-32, February.
    7. Alexander Micallef & Cyril Spiteri Staines & John Licari, 2022. "Renewable Energy Communities in Islands: A Maltese Case Study," Energies, MDPI, vol. 15(24), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farhan H. Malik & Ghulam A. Hussain & Yahia M. S. Alsmadi & Zunaib M. Haider & Wathiq Mansoor & Matti Lehtonen, 2025. "Integrating Energy Storage Technologies with Renewable Energy Sources: A Pathway Toward Sustainable Power Grids," Sustainability, MDPI, vol. 17(9), pages 1-32, May.
    2. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    3. Torsten Clemens & Martin Hunyadi-Gall & Andreas Lunzer & Vladislav Arekhov & Martin Datler & Albert Gauer, 2024. "Wind–Photovoltaic–Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage," Energies, MDPI, vol. 17(22), pages 1-26, November.
    4. Akdağ, Ozan, 2025. "Modeling and economic evaluation of hybrid renewable energy sources for green hydrogen production: A case study for the Mediterranean region," Renewable Energy, Elsevier, vol. 240(C).
    5. Maria Fotopoulou & Panagiotis Pediaditis & Niki Skopetou & Dimitrios Rakopoulos & Sotirios Christopoulos & Avraam Kartalidis, 2024. "A Review of the Energy Storage Systems of Non-Interconnected European Islands," Sustainability, MDPI, vol. 16(4), pages 1-24, February.
    6. Tatiana Myateg & Sergey Mitrofanov & Chen Xi & Yuri Sekretarev & Murodbek Safaraliev & Roman Volosatov & Anna Arestova & Aminjon Gulakhmadov, 2024. "Long-Term Hydropower Plant Scheduling Considering Environmental and Economic Criteria," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
    7. Kris Scicluna & Brian Azzopardi & Kurt Spiteri, 2023. "Power Quality Analysis for Light-Duty Electric Vehicles: A Case Study in Malta," Energies, MDPI, vol. 16(15), pages 1-13, July.
    8. Simshauser, P. & Gohde, N., 2024. "3-Party Covenant Financing of 'Semi-Regulated' Pumped Hydro Assets," Cambridge Working Papers in Economics 2425, Faculty of Economics, University of Cambridge.
    9. Khalifeh Soltani, Sayed Rashid & Mostafaeipour, Ali & Mishra, Phoolendra & Alidoost, Sara & Jahangiri, Mehdi & Abrisham Kar, Mohammad, 2025. "Green hydrogen production and prediction using floating photovoltaic panels on wastewater ponds," Renewable Energy, Elsevier, vol. 243(C).
    10. Marcelo León & Javier Silva & Rodrigo Ortíz-Soto & Samuel Carrasco, 2023. "A Techno-Economic Study for Off-Grid Green Hydrogen Production Plants: The Case of Chile," Energies, MDPI, vol. 16(14), pages 1-18, July.
    11. Yuyang Zeng & Tuo Zhou & Tong Wang & Man Zhang & Shuping Zhang & Hairui Yang, 2025. "Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization," Energies, MDPI, vol. 18(3), pages 1-22, January.
    12. Jingyu Huang & Shunde Yin, 2025. "Compressed Air Energy Storage in Salt Caverns Optimization in Southern Ontario, Canada," Energies, MDPI, vol. 18(9), pages 1-26, April.
    13. Aco Benović & Miroslav Miškić & Vladan Pantović & Slađana Vujičić & Dejan Vidojević & Mladen Opačić & Filip Jovanović, 2025. "Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia," Sustainability, MDPI, vol. 17(15), pages 1-23, July.
    14. Ahmed I. Osman & Mahmoud Nasr & A. R. Mohamed & Amal Abdelhaleem & Ali Ayati & Mohamed Farghali & Ala'a H. Al‐Muhtaseb & Ahmed S. Al‐Fatesh & David W. Rooney, 2024. "Life cycle assessment of hydrogen production, storage, and utilization toward sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
    15. Khalili, Siavash & Lopez, Gabriel & Breyer, Christian, 2025. "Role and trends of flexibility options in 100% renewable energy system analyses towards the Power-to-X Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    16. Marek Jaszczur & Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Olushola Tomilayo Olapade & Szymon Wieteska, 2023. "Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East," Energies, MDPI, vol. 16(14), pages 1-26, July.
    17. Cong Feng & Qi Guo & Qian Liu & Feihong Jian, 2025. "An Optimized Dynamic Benefit Evaluation Method for Pumped Storage Projects in the Context of the “Dual Carbon” Goal," Energies, MDPI, vol. 18(11), pages 1-27, May.
    18. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    19. Ramos, Helena M. & Pina, João & Coronado-Hernández, Oscar E. & Pérez-Sánchez, Modesto & McNabola, Aonghus, 2024. "Conceptual hybrid energy model for different power potential scales: Technical and economic approaches," Renewable Energy, Elsevier, vol. 237(PA).
    20. Ahmadullah, Ahmad Bilal & Rahimi, Mohammad Amin & Ulfat, Dawood Shah & Irshad, Ahmad Shah & Doost, Ziaul Haq & Wali, Najibullah & Karimi, Bashir Ahmad, 2025. "Decarbonizing Afghanistan: The most cost-effective renewable energy system for hydrogen production," Energy, Elsevier, vol. 324(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4732-:d:1742878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.