IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6977-d1714703.html
   My bibliography  Save this article

Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia

Author

Listed:
  • Aco Benović

    (Faculty of Technical Science, University of Novi Sad, 6 Dositeja Obradovica Sq., 21102 Novi Sad, Serbia)

  • Miroslav Miškić

    (Faculty of Technical Science, University of Novi Sad, 6 Dositeja Obradovica Sq., 21102 Novi Sad, Serbia)

  • Vladan Pantović

    (Faculty of Project and Innovation Management, Educons University, 11000 Belgrade, Serbia)

  • Slađana Vujičić

    (Faculty of Business Economics and Entrepreneurship, 11108 Belgrade, Serbia)

  • Dejan Vidojević

    (Academy of Professional Studies Sumadija, 34000 Kragujevac, Serbia)

  • Mladen Opačić

    (Faculty of Management, Metropolitan University, 11000 Belgrade, Serbia)

  • Filip Jovanović

    (Faculty of Project and Innovation Management, Educons University, 11000 Belgrade, Serbia)

Abstract

As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level.

Suggested Citation

  • Aco Benović & Miroslav Miškić & Vladan Pantović & Slađana Vujičić & Dejan Vidojević & Mladen Opačić & Filip Jovanović, 2025. "Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia," Sustainability, MDPI, vol. 17(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6977-:d:1714703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hainsch, Karlo & Löffler, Konstantin & Burandt, Thorsten & Auer, Hans & Crespo del Granado, Pedro & Pisciella, Paolo & Zwickl-Bernhard, Sebastian, 2022. "Energy transition scenarios: What policies, societal attitudes, and technology developments will realize the EU Green Deal?," Energy, Elsevier, vol. 239(PC).
    2. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    3. Hannan, M.A. & Begum, R.A. & Abdolrasol, M.G. & Hossain Lipu, M.S. & Mohamed, A. & Rashid, M.M., 2018. "Review of baseline studies on energy policies and indicators in Malaysia for future sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 551-564.
    4. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    5. Mohammad Ershadul Karim & Ridoan Karim & Md. Toriqul Islam & Firdaus Muhammad-Sukki & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2019. "Renewable Energy for Sustainable Growth and Development: An Evaluation of Law and Policy of Bangladesh," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    6. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    7. Oluyomi A. Osobajo & Afolabi Otitoju & Martha Ajibola Otitoju & Adekunle Oke, 2020. "The Impact of Energy Consumption and Economic Growth on Carbon Dioxide Emissions," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    8. Adam Fennessy & Vasile Onea & James Walshe & John Doran & Marius Purcar & George Amarandei, 2025. "Suitability of Existing Photovoltaic Degradation Models for Agrivoltaic Systems," Energies, MDPI, vol. 18(8), pages 1-31, April.
    9. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    10. Tung Nguyen Thanh & Phap Vu Minh & Kien Duong Trung & Tuan Do Anh, 2021. "Study on Performance of Rooftop Solar Power Generation Combined with Battery Storage at Office Building in Northeast Region, Vietnam," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    11. García-Riazuelo, Álvaro & Duarte, Rosa & Sarasa, Cristina & Ortega-Argilés, Raquel, 2025. "Spatial distribution and drivers of renewable energies in European regions," Energy Economics, Elsevier, vol. 144(C).
    12. Hongwen Jia & Shugang Fan & Miao Xia, 2023. "The Impact of Renewable Energy Consumption on Economic Growth: Evidence from Countries along the Belt and Road," Sustainability, MDPI, vol. 15(11), pages 1-11, May.
    13. Cyril Anak John & Lian See Tan & Jully Tan & Peck Loo Kiew & Azmi Mohd Shariff & Hairul Nazirah Abdul Halim, 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    14. Arsalan Masood & Ubaid Ahmed & Syed Zulqadar Hassan & Ahsan Raza Khan & Anzar Mahmood, 2025. "Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review," Sustainability, MDPI, vol. 17(6), pages 1-42, March.
    15. Loredana Ivan & Dorin Beu & Joost van Hoof, 2020. "Smart and Age-Friendly Cities in Romania: An Overview of Public Policy and Practice," IJERPH, MDPI, vol. 17(14), pages 1-25, July.
    16. Hui Xiang & Xiaolei Li & Xiao Liao & Wei Cui & Fengkai Liu & Donghe Li, 2025. "Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges," Energies, MDPI, vol. 18(8), pages 1-24, April.
    17. Maximilian Gasser & Simon Pezzutto & Wolfram Sparber & Eric Wilczynski, 2022. "Public Research and Development Funding for Renewable Energy Technologies in Europe: A Cross-Country Analysis," Sustainability, MDPI, vol. 14(9), pages 1-28, May.
    18. Hakim Laid Mouloud Benhacene & Asaad Mubarak Hussien, 2025. "The Impact of Adopting Renewable Energy Resources on Sustainable Development in Saudi Arabia: A Qualitative View," Sustainability, MDPI, vol. 17(2), pages 1-22, January.
    19. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    20. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    21. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.
    22. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linyue Li & Yikai Wang, 2025. "The Impact of Coordinated Two-Way FDI Development on Carbon Emissions in Belt and Road Countries: An Empirical Analysis Based on the STIRPAT Model and GMM Estimation," Sustainability, MDPI, vol. 17(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Sevcik & Jan Sumsky & Tomas Baca & Andrej Tupy, 2025. "Self-Sustaining Operations with Energy Harvesting Systems," Energies, MDPI, vol. 18(17), pages 1-42, August.
    2. Rachna, & Singh, Amit Kumar, 2024. "Analyzing policy interventions to stimulate suitable energy sources for the most polluted states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Karadag, Mehmet & Gul, Muhammet & Yucesan, Melih & Ortiz-Barrios, Miguel & Ishizaka, Alessio & Khan, Jehangir, 2025. "Evaluation of Green Deal compliance performance with a hybrid comparative multi-attribute decision model," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    4. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    5. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    6. Otsuki, Takashi & Mohd Isa, Aishah Binti & Samuelson, Ralph D., 2016. "Electric power grid interconnections in Northeast Asia: A quantitative analysis of opportunities and challenges," Energy Policy, Elsevier, vol. 89(C), pages 311-329.
    7. Leszek Dziawgo, 2024. "Support for the European Green Deal by Individual Investors:Research Results," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 486-496.
    8. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    10. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    11. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    12. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    13. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    15. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    16. Chun Wei & Xiangzhi Xu & Youbing Zhang & Xiangshan Li, 2019. "A Survey on Optimal Control and Operation of Integrated Energy Systems," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    17. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    18. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    19. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    20. Özkan, Oktay & Destek, Mehmet Akif & Balsalobre-Lorente, Daniel & Esmaeili, Parisa, 2024. "Unlocking the impact of international financial support to infrastructure, energy efficiency, and ICT on CO2 emissions in India," Energy Policy, Elsevier, vol. 194(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6977-:d:1714703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.