IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022961.html
   My bibliography  Save this article

Modeling and economic evaluation of hybrid renewable energy sources for green hydrogen production: A case study for the Mediterranean region

Author

Listed:
  • Akdağ, Ozan

Abstract

This study introduces a comprehensive model for green hydrogen production using Renewable Energy Sources (RESs), specifically Offshore Wind Power (OWP) and solar energy. The model aims to generate electrical energy from hybrid RESs for hydrogen production via seawater electrolysis. Initially, the study identifies optimal locations with high solar and offshore wind potentials and designs a hybrid RES configuration accordingly. Subsequently, the selection of electrolysis and desalination units is made based on the hydrochemical properties of seawater. The facility's operation and techno-economic analysis are conducted in the model's other stages (respectively). An application is carried out along the Mediterranean coast to validate the accuracy and robustness of the model. Subsequently, at the designated Samandag location, a green hydrogen production facility is modeled, operated chosen the appropriate technology, and subjected to a techno-economic analysis. Simulation results at Samandağ highlight significant potential for hydrogen production. In 2024, a 13.2 MW OWP plant (Scenario-1) is projected to produce 93.59 kg/h, increasing to 149.07 kg/h by 2050. In the hybrid scenario (Scenario-2), production starts at 75.11 kg/h in 2024, reaching 119.68 kg/h by 2050. Techno-economic analysis shows cost reductions from $6.8/kg to $1.26/kg in Scenario-1, and from $6.43/kg to $1.069/kg in Scenario-2 by 2050.

Suggested Citation

  • Akdağ, Ozan, 2025. "Modeling and economic evaluation of hybrid renewable energy sources for green hydrogen production: A case study for the Mediterranean region," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022961
    DOI: 10.1016/j.renene.2024.122228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincent, Immanuel & Bessarabov, Dmitri, 2018. "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1690-1704.
    2. Tubalinal, Honesto Ovid S. & Castro, Michael T. & Alcanzare, Myron T. & Matienzo, DJ Donn C. & Paraggua, Julie Anne D.R. & Chuang, Po-Ya Abel & Ocon, Joey D., 2024. "Prospects of green hydrogen production in the Philippines from solar photovoltaic and wind resources: A techno-economic analysis for the present and 2030," Renewable Energy, Elsevier, vol. 235(C).
    3. Park, Joungho & Hwan Ryu, Kyung & Kim, Chang-Hee & Chul Cho, Won & Kim, MinJoong & Hun Lee, Jae & Cho, Hyun-Seok & Lee, Jay H., 2023. "Green hydrogen to tackle the power curtailment: Meteorological data-based capacity factor and techno-economic analysis," Applied Energy, Elsevier, vol. 340(C).
    4. Genç, Mustafa Serdar & Çelik, Muhammet & Karasu, İlyas, 2012. "A review on wind energy and wind–hydrogen production in Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system in Central Anatolian Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6631-6646.
    5. Sari, Ramazan & Soytas, Ugur, 2009. "Are global warming and economic growth compatible? Evidence from five OPEC countries?," Applied Energy, Elsevier, vol. 86(10), pages 1887-1893, October.
    6. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    7. Muhammad, Hafiz Ali & Naseem, Mujahid & Kim, Jonghwan & Kim, Sundong & Choi, Yoonseok & Lee, Young Duk, 2024. "Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system," Energy, Elsevier, vol. 298(C).
    8. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    9. Karbassi, Veis & Trotter, Philipp A. & Walther, Grit, 2023. "Diversifying the African energy system: Economic versus equitable allocation of renewable electricity and e-fuel production," Applied Energy, Elsevier, vol. 350(C).
    10. Qusay Hassan & Imad Saeed Abdulrahman & Hayder M. Salman & Olushola Tomilayo Olapade & Marek Jaszczur, 2023. "Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System," Energies, MDPI, vol. 16(2), pages 1-20, January.
    11. Alexandra Kopteva & Leonid Kalimullin & Pavel Tcvetkov & Amilcar Soares, 2021. "Prospects and Obstacles for Green Hydrogen Production in Russia," Energies, MDPI, vol. 14(3), pages 1-21, January.
    12. Ryan Wiser & Joseph Rand & Joachim Seel & Philipp Beiter & Erin Baker & Eric Lantz & Patrick Gilman, 2021. "Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050," Nature Energy, Nature, vol. 6(5), pages 555-565, May.
    13. Ozan Akdağ & Celaleddin Yeroglu, 2020. "An evaluation of an offshore energy installation for the Black Sea region of Turkey and the effects on a regional decrease in greenhouse gas emissions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 531-544, June.
    14. Karayel, G. Kubilay & Javani, Nader & Dincer, Ibrahim, 2022. "Effective use of geothermal energy for hydrogen production: A comprehensive application," Energy, Elsevier, vol. 249(C).
    15. Hurtubia, Byron & Sauma, Enzo, 2021. "Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity," Applied Energy, Elsevier, vol. 304(C).
    16. Olateju, Babatunde & Kumar, Amit, 2011. "Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands," Energy, Elsevier, vol. 36(11), pages 6326-6339.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    2. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    3. Torsten Clemens & Martin Hunyadi-Gall & Andreas Lunzer & Vladislav Arekhov & Martin Datler & Albert Gauer, 2024. "Wind–Photovoltaic–Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage," Energies, MDPI, vol. 17(22), pages 1-26, November.
    4. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    5. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs," Applied Energy, Elsevier, vol. 370(C).
    6. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2022. "A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern clim," Energy, Elsevier, vol. 261(PB).
    7. Marek Jaszczur & Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Olushola Tomilayo Olapade & Szymon Wieteska, 2023. "Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East," Energies, MDPI, vol. 16(14), pages 1-26, July.
    8. Ana Beatriz Barros Souza Riedel & Vitor Feitosa Riedel & Hélio Nunes de Souza Filho & Ennio Peres da Silva & Renato Marques Cabral & Leandro de Brito Silva & Alexandre de Castro Pereira, 2024. "Technical–Economic Analysis of Renewable Hydrogen Production from Solar Photovoltaic and Hydro Synergy in a Pilot Plant in Brazil," Energies, MDPI, vol. 17(17), pages 1-20, September.
    9. Al-Mahmodi, Mohammed & Ayadi, Osama & Al-Halhouli, Ala'aldeen, 2024. "Parametric modeling of green hydrogen production in solar PV-CSP hybrid plants: A techno-economic evaluation approach," Energy, Elsevier, vol. 313(C).
    10. Tubalinal, Honesto Ovid S. & Castro, Michael T. & Alcanzare, Myron T. & Matienzo, DJ Donn C. & Paraggua, Julie Anne D.R. & Chuang, Po-Ya Abel & Ocon, Joey D., 2024. "Prospects of green hydrogen production in the Philippines from solar photovoltaic and wind resources: A techno-economic analysis for the present and 2030," Renewable Energy, Elsevier, vol. 235(C).
    11. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    12. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    13. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    14. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Cho, Hyun-Seok & Lee, Changsoo & Kim, MinJoong & Lee, Jay H., 2025. "The impact of degradation on the economics of green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    15. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    16. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    17. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    18. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    19. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    20. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.