IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4730-d1742781.html
   My bibliography  Save this article

Is the Grid Ready for the Electric Vehicle Transition?

Author

Listed:
  • Boucar Diouf

    (Department of Information Display, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
    Nopalu Institute of Science and Technology, Nord Foire, Dakar BP 29044, Senegal)

Abstract

The advancement of electric mobility undoubtedly presents a chance to reduce carbon emissions in road transport and ideally mitigate global warming. The significant and ongoing swift growth in the uptake of electric vehicles (EVs) clearly demonstrates a successful technological advancement; however, it comes with significant obstacles, particularly regarding the grids’ ability to provide adequate energy and, more importantly, a sufficient installed capacity to manage potential spikes during massive EV charging. Another significant challenge for nations aiming for 100% registrations made of EVs is the S-curve that accompanies their adoption. The S-curve illustrates three primary phases, one of which features a swift increase in the EV fleet, and this phase is likely to surpass grid investments and enhancements in many countries. This manuscript discusses a study on grid preparedness for the EV transition, addressing potential challenges, the benefits of public charging stations, particularly in densely populated regions, and the incorporation of renewable energy. Renewable energy offers the chance to alleviate the pressure on grids, provided that charging behaviors correspond with generation times. There is a need for progress in battery technology to replace classical gas stations with standalone solar or wind powered charging stations. This manuscript showcases this particular scenario in the United States of America (U.S.).

Suggested Citation

  • Boucar Diouf, 2025. "Is the Grid Ready for the Electric Vehicle Transition?," Energies, MDPI, vol. 18(17), pages 1-36, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4730-:d:1742781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    2. Tan, Kang Miao & Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Mansor, Muhamad & Teh, Jiashen & Guerrero, Josep M., 2023. "Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Abdullah Dik & Siddig Omer & Rabah Boukhanouf, 2022. "Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration," Energies, MDPI, vol. 15(3), pages 1-26, January.
    4. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.
    5. Cong Zhang & Xinyu Wang & Yihan Wang & Pingpeng Tang, 2025. "Economic Viability of Vehicle-to-Grid (V2G) Reassessed: A Degradation Cost Integrated Life-Cycle Analysis," Sustainability, MDPI, vol. 17(12), pages 1-19, June.
    6. Ahmad Amiruddin & Roger Dargaville & Ariel Liebman & Ross Gawler, 2024. "Integration of Electric Vehicles and Renewable Energy in Indonesia’s Electrical Grid," Energies, MDPI, vol. 17(9), pages 1-24, April.
    7. Jay Johnson & Timothy Berg & Benjamin Anderson & Brian Wright, 2022. "Review of Electric Vehicle Charger Cybersecurity Vulnerabilities, Potential Impacts, and Defenses," Energies, MDPI, vol. 15(11), pages 1-26, May.
    8. Yang, Minxing & Sun, Xiaofei & Liu, Rui & Wang, Lingzhi & Zhao, Fei & Mei, Xuesong, 2024. "Predict the lifetime of lithium-ion batteries using early cycles: A review," Applied Energy, Elsevier, vol. 376(PA).
    9. Hamed, Mohammad M. & Ali, Hesham & Abdelal, Qasem, 2022. "Forecasting annual electric power consumption using a random parameters model with heterogeneity in means and variances," Energy, Elsevier, vol. 255(C).
    10. Martin Weiss & Trey Winbush & Alexandra Newman & Eckard Helmers, 2024. "Energy Consumption of Electric Vehicles in Europe," Sustainability, MDPI, vol. 16(17), pages 1-26, August.
    11. Jozsef Menyhart, 2025. "Electric Vehicles and Energy Communities: Vehicle-to-Grid Opportunities and a Sustainable Future," Energies, MDPI, vol. 18(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zia Muhammad & Zahid Anwar & Bilal Saleem & Jahanzeb Shahid, 2023. "Emerging Cybersecurity and Privacy Threats to Electric Vehicles and Their Impact on Human and Environmental Sustainability," Energies, MDPI, vol. 16(3), pages 1-30, January.
    2. Natalina Damanik & Ririen Clara Octavia & Dzikri Firmansyah Hakam, 2024. "Powering Indonesia’s Future: Reviewing the Road to Electric Vehicles Through Infrastructure, Policy, and Economic Growth," Energies, MDPI, vol. 17(24), pages 1-16, December.
    3. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    4. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    5. Badenhoop, Nikolai & Riedel, Max, 2024. "Reforming EU car labels: How to achieve consumer-friendly transparency?," SAFE Working Paper Series 433, Leibniz Institute for Financial Research SAFE.
    6. Maciej Kozłowski & Andrzej Czerepicki, 2025. "Operational Energy Consumption Map for Urban Electric Buses: Case Study for Warsaw," Energies, MDPI, vol. 18(13), pages 1-19, June.
    7. Schulz, Arne & Boysen, Nils & Briskorn, Dirk, 2024. "Centrally-chosen versus user-selected swaps: How the selection of swapping stations impacts standby battery inventories," European Journal of Operational Research, Elsevier, vol. 319(3), pages 726-738.
    8. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    9. Sania E. Seilabi & Mohammadhosein Pourgholamali & Mohammad Miralinaghi & Gonçalo Homem de Almeida Correia & Zongzhi Li & Samuel Labi, 2024. "Sustainable Planning of Electric Vehicle Charging Stations: A Bi-Level Optimization Framework for Reducing Vehicular Emissions in Urban Road Networks," Sustainability, MDPI, vol. 17(1), pages 1-23, December.
    10. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    11. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Heeyun Lee & Hyunjoong Kim & Hyewon Kim & Hyunsup Kim, 2025. "Optimal Vehicle-to-Grid Charge Scheduling for Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 18(5), pages 1-15, February.
    13. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Ma, Kai & Nie, Xuefeng & Yang, Jie & Zha, Linlin & Li, Guoqiang & Li, Haibin, 2025. "A power load forecasting method in port based on VMD-ICSS-hybrid neural network," Applied Energy, Elsevier, vol. 377(PB).
    15. Jannesar Niri, Anahita & Poelzer, Gregory A. & Zhang, Steven E. & Rosenkranz, Jan & Pettersson, Maria & Ghorbani, Yousef, 2024. "Sustainability challenges throughout the electric vehicle battery value chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Shaohua Cui & Hui Zhao & Cuiping Zhang, 2018. "Locating Charging Stations of Various Sizes with Different Numbers of Chargers for Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-22, November.
    17. Wang, Shunli & Wu, Yingyang & Zhou, Heng & Zhang, Qin & Fernandez, Carlos & Blaabjerg, Frede, 2025. "Improved particle swarm optimization-adaptive dual extended Kalman filtering for accurate battery state of charge and state of energy joint estimation with efficient core factor feedback correction," Energy, Elsevier, vol. 322(C).
    18. Gupta, Kirti & Panigrahi, Bijaya Ketan & Joshi, Anupam & Paul, Kolin, 2024. "Demonstration of denial of charging attack on electric vehicle charging infrastructure and its consequences," International Journal of Critical Infrastructure Protection, Elsevier, vol. 46(C).
    19. Chaoxi Liang & Qingtao Yang & Hongyuan Sun & Xiaoming Ma, 2024. "Unveiling consumer satisfaction and its driving factors of EVs in China using an explainable artificial intelligence approach," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    20. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4730-:d:1742781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.