IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4678-d1741244.html
   My bibliography  Save this article

Performance Evaluation of Similarity Metrics in Transfer Learning for Building Heating Load Forecasting

Author

Listed:
  • Di Bai

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Shuo Ma

    (School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300192, China)

  • Hongting Ma

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

Abstract

Accurately predicting building heating and cooling loads is crucial for optimizing HVAC systems and enhancing energy efficiency. However, data-driven models often face overfitting issues due to scarce training data, a common challenge for new constructions or under data privacy constraints. Transfer learning (TL) offers a solution, but its effectiveness heavily depends on selecting an appropriate source domain through effective similarity measurement. This study systematically evaluates the performance of 20 prevalent similarity metrics in TL for building heating load forecasting to identify the most robust metrics for mitigating data scarcity. Experiments were conducted on data from 500 buildings, with seven distinct low-data target scenarios established for a single target building. The Relative Error Gap ( REG ) was employed to assess the efficacy of transfer learning facilitated by each metric. The results demonstrate that distance-based metrics, particularly Euclidean, normalized Euclidean, and Manhattan distances, consistently yielded lower REG values and higher stability across scenarios. In contrast, probabilistic measures such as the Bhattacharyya coefficient and Bray–Curtis similarity exhibited poorer and less stable performance. This research provides a validated guideline for selecting similarity metrics in TL applications for building energy forecasting.

Suggested Citation

  • Di Bai & Shuo Ma & Hongting Ma, 2025. "Performance Evaluation of Similarity Metrics in Transfer Learning for Building Heating Load Forecasting," Energies, MDPI, vol. 18(17), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4678-:d:1741244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    2. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
    3. Xing, Zhuoqun & Pan, Yiqun & Yang, Yiting & Yuan, Xiaolei & Liang, Yumin & Huang, Zhizhong, 2024. "Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction," Applied Energy, Elsevier, vol. 365(C).
    4. Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
    5. Qian, Fanyue & Gao, Weijun & Yang, Yongwen & Yu, Dan, 2020. "Potential analysis of the transfer learning model in short and medium-term forecasting of building HVAC energy consumption," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    2. Lu, Yakai & Peng, Xingyu & Li, Conghui & Tian, Zhe & Kong, Xiangfei & Niu, Jide, 2025. "Few-sample model training assistant: A meta-learning technique for building heating load forecasting based on simulation data," Energy, Elsevier, vol. 317(C).
    3. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    4. Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
    5. Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
    6. Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
    7. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    8. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
    9. Xing, Zhuoqun & Pan, Yiqun & Yang, Yiting & Yuan, Xiaolei & Liang, Yumin & Huang, Zhizhong, 2024. "Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction," Applied Energy, Elsevier, vol. 365(C).
    10. Hongwen Dou & Radu Zmeureanu, 2023. "Transfer Learning Prediction Performance of Chillers for Neural Network Models," Energies, MDPI, vol. 16(20), pages 1-16, October.
    11. Liu, Jiangyan & Zhang, Qing & Dong, Zhenxiang & Li, Xin & Li, Guannan & Xie, Yi & Li, Kuining, 2021. "Quantitative evaluation of the building energy performance based on short-term energy predictions," Energy, Elsevier, vol. 223(C).
    12. Moghadam, Saman Salehi & Gholamian, Mohammad Reza & Zahedi, Rahim & Shaqaqifar, Maziar, 2024. "Designing a multi-purpose network of sustainable and closed-loop renewable energy supply chain, considering reliability and circular economy," Applied Energy, Elsevier, vol. 369(C).
    13. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    14. Bibars Amangeldy & Nurdaulet Tasmurzayev & Timur Imankulov & Baglan Imanbek & Waldemar Wójcik & Yedil Nurakhov, 2025. "A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors," Energies, MDPI, vol. 18(15), pages 1-31, August.
    15. Yuhong Zhao & Ruirui Liu & Zhansheng Liu & Liang Liu & Jingjing Wang & Wenxiang Liu, 2023. "A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    16. Ma, Yuying & Kong, Xiangyu & Zhao, Liang & Liu, Gaohua & Gao, Bixuan, 2024. "A method for analyzing the irrepazrability of diverse electricity consumption data based on improved data generation technology," Applied Energy, Elsevier, vol. 374(C).
    17. Wenjie Guo & Jie Liu & Jun Ma & Zheng Lan, 2025. "Short-Term Power Load Forecasting Using Adaptive Mode Decomposition and Improved Least Squares Support Vector Machine," Energies, MDPI, vol. 18(10), pages 1-17, May.
    18. Fan, Cheng & Chen, Ruikun & Mo, Jinhan & Liao, Longhui, 2024. "Personalized federated learning for cross-building energy knowledge sharing: Cost-effective strategies and model architectures," Applied Energy, Elsevier, vol. 362(C).
    19. Liu, Shuhan & Sun, Wenqiang, 2025. "Knowledge- and data-driven prediction of blast furnace gas generation and consumption in iron and steel sites," Applied Energy, Elsevier, vol. 390(C).
    20. Xun Dou & Yu He, 2025. "A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis," Mathematics, MDPI, vol. 13(7), pages 1-22, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4678-:d:1741244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.