IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4164-d1718416.html
   My bibliography  Save this article

A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors

Author

Listed:
  • Bibars Amangeldy

    (LLP “DigitAlem”, Almaty 050042, Kazakhstan
    Faculty of Information Technologies, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Nurdaulet Tasmurzayev

    (LLP “DigitAlem”, Almaty 050042, Kazakhstan
    Faculty of Information Technologies, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Timur Imankulov

    (LLP “DigitAlem”, Almaty 050042, Kazakhstan
    Faculty of Information Technologies, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Baglan Imanbek

    (Faculty of Information Technologies, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Waldemar Wójcik

    (Institute of Electronics and Information Technology, Politechnika Lubelska, 20-618 Lublin, Poland)

  • Yedil Nurakhov

    (LLP “DigitAlem”, Almaty 050042, Kazakhstan
    Faculty of Information Technologies, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

Abstract

Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance of hybrid machine learning ensembles for predicting hourly energy demand in a smart office environment using high-frequency IEQ sensor data. Environmental variables including carbon dioxide concentration (CO 2 ), particulate matter (PM 2.5 ), total volatile organic compounds (TVOCs), noise levels, humidity, and temperature were recorded over a four-month period. We evaluated two ensemble configurations combining support vector regression (SVR) with either Random Forest or LightGBM as base learners and Ridge regression as a meta-learner, alongside single-model baselines such as SVR and artificial neural networks (ANN). The SVR combined with Random Forest and Ridge regression demonstrated the highest predictive performance, achieving a mean absolute error (MAE) of 1.20, a mean absolute percentage error (MAPE) of 8.92%, and a coefficient of determination (R 2 ) of 0.82. Feature importance analysis using SHAP values, together with non-parametric statistical testing, identified TVOCs, humidity, and PM 2.5 as the most influential predictors of energy use. These findings highlight the value of integrating high-resolution IEQ data into predictive frameworks and demonstrate that such data can significantly improve forecasting accuracy. This effect is attributed to the direct link between these IEQ variables and the activation of energy-intensive systems; fluctuations in humidity drive HVAC energy use for dehumidification, while elevated pollutant levels (TVOCs, PM 2.5 ) trigger increased ventilation to maintain indoor air quality, thus raising the total energy load.

Suggested Citation

  • Bibars Amangeldy & Nurdaulet Tasmurzayev & Timur Imankulov & Baglan Imanbek & Waldemar Wójcik & Yedil Nurakhov, 2025. "A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors," Energies, MDPI, vol. 18(15), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4164-:d:1718416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    2. Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
    3. Anna Devitofrancesco & Lorenzo Belussi & Italo Meroni & Fabio Scamoni, 2019. "Development of an Indoor Environmental Quality Assessment Tool for the Rating of Offices in Real Working Conditions," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    4. Ahmad, Tanveer & Chen, Huanxin & Huang, Ronggeng & Yabin, Guo & Wang, Jiangyu & Shair, Jan & Azeem Akram, Hafiz Muhammad & Hassnain Mohsan, Syed Agha & Kazim, Muhammad, 2018. "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment," Energy, Elsevier, vol. 158(C), pages 17-32.
    5. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    6. Xu Chen & Kai Zhang & Zhenning Ji & Xiaoli Shen & Piyang Liu & Liming Zhang & Jian Wang & Jun Yao, 2023. "Progress and Challenges of Integrated Machine Learning and Traditional Numerical Algorithms: Taking Reservoir Numerical Simulation as an Example," Mathematics, MDPI, vol. 11(21), pages 1-44, October.
    7. Chunrong Jia & Kevin Cao & Riya Valaulikar & Xianqiang Fu & Anna Bess Sorin, 2019. "Variability of Total Volatile Organic Compounds (TVOC) in the Indoor Air of Retail Stores," IJERPH, MDPI, vol. 16(23), pages 1-9, November.
    8. Michał Piasecki & Mateusz Kozicki & Szymon Firląg & Anna Goljan & Krystyna Kostyrko, 2018. "The Approach of Including TVOCs Concentration in the Indoor Environmental Quality Model (IEQ)—Case Studies of BREEAM Certified Office Buildings," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    9. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    10. Foucquier, Aurélie & Robert, Sylvain & Suard, Frédéric & Stéphan, Louis & Jay, Arnaud, 2013. "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 272-288.
    11. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    12. Hossein Moayedi & Amir Mosavi, 2021. "Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-25, March.
    13. Nuodi Fu & Moon Keun Kim & Bing Chen & Stephen Sharples, 2021. "Comparative Modelling Analysis of Air Pollutants, PM 2.5 and Energy Efficiency Using Three Ventilation Strategies in a High-Rise Building: A Case Study in Suzhou, China," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    14. Banafshe Parizad & Hassan Ranjbarzadeh & Ali Jamali & Hamid Khayyam, 2024. "An Intelligent Hybrid Machine Learning Model for Sustainable Forecasting of Home Energy Demand and Electricity Price," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
    15. Vasco Correia & Pedro D. Silva & Luís C. Pires, 2023. "Energy Requirements and Photovoltaic Area for Atmospheric Water Generation in Different Locations: Lisbon, Pretoria, and Riyadh," Energies, MDPI, vol. 16(13), pages 1-27, July.
    16. Lu, Hongfang & Cheng, Feifei & Ma, Xin & Hu, Gang, 2020. "Short-term prediction of building energy consumption employing an improved extreme gradient boosting model: A case study of an intake tower," Energy, Elsevier, vol. 203(C).
    17. Yuvaraj Natarajan & Sri Preethaa K. R. & Gitanjali Wadhwa & Young Choi & Zengshun Chen & Dong-Eun Lee & Yirong Mi, 2024. "Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
    18. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
    19. Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
    20. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    21. Lucas Henriques & Cecilia Castro & Felipe Prata & Víctor Leiva & René Venegas, 2024. "Modeling Residential Energy Consumption Patterns with Machine Learning Methods Based on a Case Study in Brazil," Mathematics, MDPI, vol. 12(13), pages 1-33, June.
    22. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    23. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peplinski, McKenna & Dilkina, Bistra & Chen, Mo & Silva, Sam J. & Ban-Weiss, George A. & Sanders, Kelly T., 2024. "A machine learning framework to estimate residential electricity demand based on smart meter electricity, climate, building characteristics, and socioeconomic datasets," Applied Energy, Elsevier, vol. 357(C).
    2. Xu, X. & Hu, Y. & Atamturktur, S. & Chen, L. & Wang, J., 2025. "Systematic review on uncertainty quantification in machine learning-based building energy modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    3. Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
    4. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    5. Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
    6. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    7. Pedone, Livio & Molaioni, Filippo & Vallati, Andrea & Pampanin, Stefano, 2023. "Energy refurbishment planning of Italian school buildings using data-driven predictive models," Applied Energy, Elsevier, vol. 350(C).
    8. Sungjin Lee & Soo Cho & Seo-Hoon Kim & Jonghun Kim & Suyong Chae & Hakgeun Jeong & Taeyeon Kim, 2020. "Deep Neural Network Approach for Prediction of Heating Energy Consumption in Old Houses," Energies, MDPI, vol. 14(1), pages 1-14, December.
    9. Fan, Cheng & Lei, Yutian & Sun, Yongjun & Piscitelli, Marco Savino & Chiosa, Roberto & Capozzoli, Alfonso, 2022. "Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context," Energy, Elsevier, vol. 240(C).
    10. Cao, Wenqiang & Yu, Junqi & Chao, Mengyao & Wang, Jingqi & Yang, Siyuan & Zhou, Meng & Wang, Meng, 2023. "Short-term energy consumption prediction method for educational buildings based on model integration," Energy, Elsevier, vol. 283(C).
    11. Chen, Yibo & Zhang, Fengyi & Berardi, Umberto, 2020. "Day-ahead prediction of hourly subentry energy consumption in the building sector using pattern recognition algorithms," Energy, Elsevier, vol. 211(C).
    12. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    13. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    14. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    15. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    16. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    17. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    18. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    19. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    20. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4164-:d:1718416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.