IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4473-d1730606.html
   My bibliography  Save this article

Evaluation of Technological Alternatives for the Energy Transition of Coal-Fired Power Plants, with a Multi-Criteria Approach

Author

Listed:
  • Jessica Valeria Lugo

    (Interdisciplinary Postgraduate Program in Energy & Sustainability (PPGIES), Federal University of Latin American Integration—UNILA, Foz do Iguaçu 85867-000, PR, Brazil
    Research Group on Energy & Energy Sustainability (GPEnSE), Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil)

  • Norah Nadia Sánchez Torres

    (Interdisciplinary Postgraduate Program in Energy & Sustainability (PPGIES), Federal University of Latin American Integration—UNILA, Foz do Iguaçu 85867-000, PR, Brazil
    Research Group on Energy & Energy Sustainability (GPEnSE), Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil)

  • Renan Douglas Lopes da Silva Cavalcante

    (Postgraduate Program in Mechanical Engineering (PPGEM), Center of Technology (CT), Federal University of Paraiba (UFPB), João Pessoa 58051-900, PB, Brazil)

  • Taynara Geysa Silva do Lago

    (Center for Alternative and Renewable Research (CEAR), Federal University of Paraiba (UFPB), João Pessoa 58051-900, PB, Brazil)

  • João Alves de Lima

    (Postgraduate Program in Mechanical Engineering (PPGEM), Center of Technology (CT), Federal University of Paraiba (UFPB), João Pessoa 58051-900, PB, Brazil)

  • Jorge Javier Gimenez Ledesma

    (Interdisciplinary Postgraduate Program in Energy & Sustainability (PPGIES), Federal University of Latin American Integration—UNILA, Foz do Iguaçu 85867-000, PR, Brazil
    Research Group on Energy & Energy Sustainability (GPEnSE), Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil)

  • Oswaldo Hideo Ando Junior

    (Interdisciplinary Postgraduate Program in Energy & Sustainability (PPGIES), Federal University of Latin American Integration—UNILA, Foz do Iguaçu 85867-000, PR, Brazil
    Center for Alternative and Renewable Research (CEAR), Federal University of Paraiba (UFPB), João Pessoa 58051-900, PB, Brazil)

Abstract

This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources, using an integrated multi-criteria decision-making approach that combines Proknow-C, AHP, and PROMETHEE. Eight alternatives were identified: full conversion to natural gas, full conversion to biomass, coal and natural gas hybridization, coal and biomass hybridization, electricity and hydrogen cogeneration, coal and solar energy hybridization, post-combustion carbon capture systems, and decommissioning with subsequent reuse. The analysis combined bibliographic data (26 scientific articles and 13 patents) with surveys from 14 energy experts, using Total Decision version 1.2.1041.0 and Visual PROMETHEE version 1.1.0.0 software tools. Based on six criteria (environmental, structural, technical, technological, economic, and social), the most viable option was full conversion to natural gas (ϕ = +0.0368), followed by coal and natural gas hybridization (ϕ = +0.0257), and coal and solar hybridization (ϕ = +0.0124). These alternatives emerged as the most balanced in terms of emissions reduction, infrastructure reuse, and cost efficiency. In contrast, decommissioning (ϕ = −0.0578) and carbon capture systems (ϕ = −0.0196) were less favorable. This study proposes a structured framework for strategic energy planning that supports a just energy transition and contributes to the United Nations Sustainable Development Goals (SDGs) 7 and 13, highlighting the need for public policies that enhance the competitiveness and scalability of sustainable alternatives.

Suggested Citation

  • Jessica Valeria Lugo & Norah Nadia Sánchez Torres & Renan Douglas Lopes da Silva Cavalcante & Taynara Geysa Silva do Lago & João Alves de Lima & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junio, 2025. "Evaluation of Technological Alternatives for the Energy Transition of Coal-Fired Power Plants, with a Multi-Criteria Approach," Energies, MDPI, vol. 18(17), pages 1-39, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4473-:d:1730606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Freitas, F.F. & De Souza, S.S. & Ferreira, L.R.A. & Otto, R.B. & Alessio, F.J. & De Souza, S.N.M. & Venturini, O.J. & Ando Junior, O.H., 2019. "The Brazilian market of distributed biogas generation: Overview, technological development and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 146-157.
    2. Michelli Mayara de Medeiros Gomes & Renan Douglas Lopes da Silva Cavalcante & Oswaldo Hideo Ando Junior & Claudio Del Pero & João Alves de Lima & Taynara Geysa Silva do Lago, 2025. "The Effect of Facade Orientation on the Electrical Performance of a BIPV System: A Case Study in João Pessoa, Brazil," Energies, MDPI, vol. 18(4), pages 1-19, February.
    3. Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
    4. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.
    5. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2023. "Innovative hybridization of the two-archive and PROMETHEE-II triple-objective and multi-criterion decision making for optimum configuration of the hybrid renewable energy system," Applied Energy, Elsevier, vol. 341(C).
    6. Stanislav Chicherin & Andrey Zhuikov & Petr Kuznetsov, 2024. "The Return of Coal-Fired Combined Heat and Power Plants: Feasibility and Environmental Assessment in the Case of Conversion to Another Fuel or Modernizing an Exhaust System," Sustainability, MDPI, vol. 16(5), pages 1-15, February.
    7. Margarida Casau & Diana C. M. Cancela & João C. O. Matias & Marta Ferreira Dias & Leonel J. R. Nunes, 2021. "Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal)," Resources, MDPI, vol. 10(8), pages 1-20, August.
    8. Calabrese, Armando & Costa, Roberta & Levialdi, Nathan & Menichini, Tamara, 2019. "Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 155-168.
    9. Paulo Gabriel Martins Leandro & Fabiano Salvadori & José Enrique Eirez Izquierdo & Marco Roberto Cavallari & Oswaldo Hideo Ando Junior, 2024. "The Advancements and Challenges in Organic Photovoltaic Cells: A Focused and Spotlight Review Using the Proknow-C," Energies, MDPI, vol. 17(17), pages 1-18, August.
    10. Ivonete Borne & Sara Angélica Santos de Souza & Evelyn Tânia Carniatto Silva & Gabriel Brugues Soares & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2025. "Sustainable Mobility: Analysis of the Implementation of Electric Bus in University Transportation," Energies, MDPI, vol. 18(9), pages 1-35, April.
    11. Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    2. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2021. "Assessing the influence of legal constraints on the integration of renewable energy technologies in polygeneration systems for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Kim, Taemin & Ko, Youngsu & Lee, Younghun & Cha, Cheolung & Kim, Namsu, 2020. "Experimental analysis of flexible thermoelectric generators used for self-powered devices," Energy, Elsevier, vol. 200(C).
    6. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    7. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    8. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    9. Meng, Zhiyi & Li, Eldon Y. & Qiu, Rui, 2020. "Environmental sustainability with free-floating carsharing services: An on-demand refueling recommendation system for Car2go in Seattle," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    10. Robin Hogrefe & Sabine Bohnet-Joschko, 2023. "The Social Dimension of Corporate Sustainability: Review of an Evolving Research Field," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    11. Sugumar Mariappanadar, 2025. "Human Capital to Implement Corporate Sustainability Business Strategies for Common Good," Sustainability, MDPI, vol. 17(10), pages 1-23, May.
    12. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Alharmoodi, Ahmed Abdulla & Khan, Mehmood & Mertzanis, Charilaos & Gupta, Shivam & Mikalef, Patrick & Parida, Vinit, 2024. "Co-creation and critical factors for the development of an efficient public e-tourism system," Journal of Business Research, Elsevier, vol. 174(C).
    14. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.
    16. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Morgan Alamandi, 2025. "Sustainable Innovation Management: Balancing Economic Growth and Environmental Responsibility," Sustainability, MDPI, vol. 17(10), pages 1-31, May.
    18. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    20. Livio Cricelli & Serena Strazzullo, 2021. "The Economic Aspect of Digital Sustainability: A Systematic Review," Sustainability, MDPI, vol. 13(15), pages 1-15, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4473-:d:1730606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.