IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4402-d1727059.html
   My bibliography  Save this article

Distribution Network Situational Awareness Prediction Based on Spatio-Temporal Attention Dynamic Graph Neural Network

Author

Listed:
  • Xixi Qiu

    (School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 401331, China)

  • Yuteng Huang

    (State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311000, China)

  • Guojin Liu

    (School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 401331, China)

  • Jiaxiang Yan

    (State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311000, China)

  • Shan Chen

    (State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311000, China)

Abstract

Distribution network situational awareness prediction is a key technology for ensuring the safe and stable operation of distribution networks. However, most existing methods suffer from spatio-temporal dynamic correlation and dynamic topology, resulting in unsatisfactory performance. To address these issues, we propose a distribution network situational awareness prediction method based on a spatio-temporal attention dynamic graph neural network model that realizes the decoupling of spatio-temporal features of the distribution network data by adopting the alternating stacking of the multi-head self-attention mechanism with temporal dynamic perception and the spatial dynamic graph convolution module. Furthermore, the dynamic correlation matrix is introduced to adaptively adjust the node interaction weights to effectively handle the network dynamic topology information. Through extensive experiments, the proposed method outperforms eight baseline models.

Suggested Citation

  • Xixi Qiu & Yuteng Huang & Guojin Liu & Jiaxiang Yan & Shan Chen, 2025. "Distribution Network Situational Awareness Prediction Based on Spatio-Temporal Attention Dynamic Graph Neural Network," Energies, MDPI, vol. 18(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4402-:d:1727059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, He & Dong, Yawei & Dong, Yao & Wang, Jianzhou, 2024. "Power load forecasting based on spatial–temporal fusion graph convolution network," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    2. Simeunović, Jelena & Schubnel, Baptiste & Alet, Pierre-Jean & Carrillo, Rafael E. & Frossard, Pascal, 2022. "Interpretable temporal-spatial graph attention network for multi-site PV power forecasting," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
    2. Andreas Lenk & Marcus Vogt & Christoph Herrmann, 2024. "An Approach to Predicting Energy Demand Within Automobile Production Using the Temporal Fusion Transformer Model," Energies, MDPI, vol. 18(1), pages 1-34, December.
    3. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    4. Isaac Gallardo & Daniel Amor & Álvaro Gutiérrez, 2023. "Recent Trends in Real-Time Photovoltaic Prediction Systems," Energies, MDPI, vol. 16(15), pages 1-17, July.
    5. Wang, Da & Yang, Mao & Zhang, Wei & Ma, Chenglian & Su, Xin, 2025. "Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining," Applied Energy, Elsevier, vol. 380(C).
    6. Dong, Xianzhou & Luo, Yongqiang & Yuan, Shuo & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2025. "Building electricity load forecasting based on spatiotemporal correlation and electricity consumption behavior information," Applied Energy, Elsevier, vol. 377(PB).
    7. Wen, Yan & Pan, Su & Li, Xinxin & Li, Zibo & Wen, Wuzhenghong, 2024. "Improving multi-site photovoltaic forecasting with relevance amplification: DeepFEDformer-based approach," Energy, Elsevier, vol. 299(C).
    8. Zhao, Yongning & Zhao, Yuan & Liao, Haohan & Pan, Shiji & Zheng, Yingying, 2025. "Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting," Applied Energy, Elsevier, vol. 380(C).
    9. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    10. Llinet Benavides Cesar & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira & Ramon Alcarria, 2023. "CyL-GHI: Global Horizontal Irradiance Dataset Containing 18 Years of Refined Data at 30-Min Granularity from 37 Stations Located in Castile and León (Spain)," Data, MDPI, vol. 8(4), pages 1-21, March.
    11. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
    12. Qiu, Lihong & Ma, Wentao & Feng, Xiaoyang & Dai, Jiahui & Dong, Yuzhuo & Duan, Jiandong & Chen, Badong, 2024. "A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique," Applied Energy, Elsevier, vol. 359(C).
    13. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
    14. Song, Weiye & Yan, Jie & Han, Shuang & Liu, Shihua & Wang, Han & Dai, Qiangsheng & Huo, Xuesong & Liu, Yongqian, 2024. "A multi-task spatio-temporal fusion network for offshore wind power ramp events forecasting," Renewable Energy, Elsevier, vol. 237(PB).
    15. Zhou, Heng & Zheng, Peijun & Dong, Jiuqing & Liu, Jiang & Nakanishi, Yosuke, 2024. "Interpretable feature selection and deep learning for short-term probabilistic PV power forecasting in buildings using local monitoring data," Applied Energy, Elsevier, vol. 376(PA).
    16. Hasnat, Md Abul & Asadi, Somayeh & Alemazkoor, Negin, 2025. "A graph attention network framework for generalized-horizon multi-plant solar power generation forecasting using heterogeneous data," Renewable Energy, Elsevier, vol. 243(C).
    17. Franko Pandžić & Tomislav Capuder, 2023. "Advances in Short-Term Solar Forecasting: A Review and Benchmark of Machine Learning Methods and Relevant Data Sources," Energies, MDPI, vol. 17(1), pages 1-19, December.
    18. Xie, Tuo & Yun, Xinyao & Zhang, Gang & Li, Hua & Zhang, Kaoshe & Wang, Ruogu, 2024. "Charging station cluster load prediction: Spatiotemporal multi-graph fusion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4402-:d:1727059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.