IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4168-d1718679.html
   My bibliography  Save this article

An Integrated Bond Graph Methodology for Building Performance Simulation

Author

Listed:
  • Abdelatif Merabtine

    (Department of Construction Engineering, École de Technologie Supérieure, University of Québec, Montreal, QC H3C 1K3, Canada)

Abstract

Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate and analyze the thermal behavior of an integrated trigeneration system within an experimental test cell. Unlike conventional simulation approaches, the BG framework enables unified modeling of thermal and hydraulic subsystems, offering a physically consistent and energy-based representation of system dynamics. The study investigates the system’s performance under both dynamic and steady-state conditions across two distinct climatic periods. Validation against experimental data reveals strong agreement between measured and simulated temperatures in heating and cooling scenarios, with minimal deviations. This confirms the method’s reliability and its capacity to capture transient thermal behaviors. The results also demonstrate the BG model’s effectiveness in supporting predictive control strategies, optimizing energy efficiency, and maintaining thermal comfort. By integrating hydraulic circuits and thermal exchange processes within a single modeling framework, this work highlights the potential of bond graphs as a robust and scalable tool for advanced building performance simulation.

Suggested Citation

  • Abdelatif Merabtine, 2025. "An Integrated Bond Graph Methodology for Building Performance Simulation," Energies, MDPI, vol. 18(15), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4168-:d:1718679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    2. Jon Duan & G. Cornelis van Kooten & A. T. M. Hasibul Islam, 2023. "Calibration of Grid Models for Analyzing Energy Policies," Energies, MDPI, vol. 16(3), pages 1-21, January.
    3. Li Yang, 2024. "Advanced Technologies in HVAC Equipment and Thermal Environment for Building," Energies, MDPI, vol. 17(21), pages 1-2, November.
    4. Michael Frank & Fabian Borst & Lukas Theisinger & Tobias Lademann & Daniel Fuhrländer-Völker & Matthias Weigold, 2024. "Framework for Implementation of Building Automation Control Programs for Industrial Heating and Cooling Systems," Energies, MDPI, vol. 17(21), pages 1-28, October.
    5. Walter, Travis & Price, Phillip N. & Sohn, Michael D., 2014. "Uncertainty estimation improves energy measurement and verification procedures," Applied Energy, Elsevier, vol. 130(C), pages 230-236.
    6. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Granderson, Jessica & Price, Phillip N. & Jump, David & Addy, Nathan & Sohn, Michael D., 2015. "Automated measurement and verification: Performance of public domain whole-building electric baseline models," Applied Energy, Elsevier, vol. 144(C), pages 106-113.
    3. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    4. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    5. Kai Yang & Tianhao Shi & Tingzhen Ming & Yongjia Wu & Yanhua Chen & Zhongyi Yu & Mohammad Hossein Ahmadi, 2023. "Study of Internal Flow Heat Transfer Characteristics of Ejection-Permeable FADS," Energies, MDPI, vol. 16(11), pages 1-20, May.
    6. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.
    7. Lee, Ruda & Kim, Dongsu & Yoon, Jongho & Kang, Eunho & Cho, Heejin & Kim, Jinhwi, 2024. "Development and calibration of apartment building energy model based on architectural and energy consumption characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    8. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    9. Ye, Xianming & Xia, Xiaohua, 2016. "Optimal metering plan for measurement and verification on a lighting case study," Energy, Elsevier, vol. 95(C), pages 580-592.
    10. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    11. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    12. Herman Carstens & Xiaohua Xia & Sarma Yadavalli, 2018. "Bayesian Energy Measurement and Verification Analysis," Energies, MDPI, vol. 11(2), pages 1-20, February.
    13. Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
    14. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    15. Smith, Sarah Josephine & Wei, Max & Sohn, Michael D., 2016. "A retrospective analysis of compact fluorescent lamp experience curves and their correlations to deployment programs," Energy Policy, Elsevier, vol. 98(C), pages 505-512.
    16. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
    17. Fei Xie & Junxue Zhang & Guodong Wu & Chunxia Zhang & Hechi Wang, 2023. "The Environmental Sustainability Study of an Airport Building System Based on an Integrated LCA-Embodied Energy (Emergy)-ANN Analysis," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    18. Wael S. Al-Rashed & Abderrahim Lakhouit, 2025. "Comprehensive Assessment and Mitigation of Indoor Air Quality in a Commercial Retail Building in Saudi Arabia," Sustainability, MDPI, vol. 17(13), pages 1-19, June.
    19. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong & Sun, Qiming, 2020. "A hybrid short-term load forecasting model and its application in ground source heat pump with cooling storage system," Renewable Energy, Elsevier, vol. 161(C), pages 1244-1259.
    20. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4168-:d:1718679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.