IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v95y2016icp580-592.html
   My bibliography  Save this article

Optimal metering plan for measurement and verification on a lighting case study

Author

Listed:
  • Ye, Xianming
  • Xia, Xiaohua

Abstract

M&V (Measurement and Verification) has become an indispensable process in various incentive EEDSM (energy efficiency and demand side management) programmes to accurately and reliably measure and verify the project performance in terms of energy and/or cost savings. Due to the uncertain nature of the unmeasurable savings, there is an inherent trade-off between the M&V accuracy and M&V cost. In order to achieve the required M&V accuracy cost-effectively, we propose a combined spatial and longitudinal MCM (metering cost minimisation) model to assist the design of optimal M&V metering plans, which minimises the metering cost whilst satisfying the required measurement and sampling accuracy of M&V. The objective function of the proposed MCM model is the M&V metering cost that covers the procurement, installation and maintenance of the metering system whereas the M&V accuracy requirements are formulated as the constraints. Optimal solutions to the proposed MCM model offer useful information in designing the optimal M&V metering plan. The advantages of the proposed MCM model are demonstrated by a case study of an EE lighting retrofit project and the model is widely applicable to other M&V lighting projects with different population sizes and sampling accuracy requirements.

Suggested Citation

  • Ye, Xianming & Xia, Xiaohua, 2016. "Optimal metering plan for measurement and verification on a lighting case study," Energy, Elsevier, vol. 95(C), pages 580-592.
  • Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:580-592
    DOI: 10.1016/j.energy.2015.11.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.11.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. -, 1997. "Major statistical publications: abstracts," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 27418, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    2. Burman, Esfand & Mumovic, Dejan & Kimpian, Judit, 2014. "Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings," Energy, Elsevier, vol. 77(C), pages 153-163.
    3. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2014. "Optimal sampling plan for clean development mechanism lighting projects with lamp population decay," Applied Energy, Elsevier, vol. 136(C), pages 1184-1192.
    4. Granderson, Jessica & Price, Phillip N., 2014. "Development and application of a statistical methodology to evaluate the predictive accuracy of building energy baseline models," Energy, Elsevier, vol. 66(C), pages 981-990.
    5. Vine, Edward L. & Murakoshi, Chiharu & Nakagami, Hidetoshi, 1998. "International ESCO business opportunities and challenges: a Japanese case study," Energy, Elsevier, vol. 23(6), pages 439-447.
    6. Kelly Kissock, J. & Eger, Carl, 2008. "Measuring industrial energy savings," Applied Energy, Elsevier, vol. 85(5), pages 347-361, May.
    7. Carstens, Herman & Xia, Xiaohua & Ye, Xianming, 2014. "Improvements to longitudinal Clean Development Mechanism sampling designs for lighting retrofit projects," Applied Energy, Elsevier, vol. 126(C), pages 256-265.
    8. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Optimal sampling plan for clean development mechanism energy efficiency lighting projects," Applied Energy, Elsevier, vol. 112(C), pages 1006-1015.
    9. Michaelowa, Axel & Jotzo, Frank, 2005. "Transaction costs, institutional rigidities and the size of the clean development mechanism," Energy Policy, Elsevier, vol. 33(4), pages 511-523, March.
    10. Kaiser, Mark J. & Pulsipher, Allan G., 2010. "Preliminary assessment of the Louisiana Home Energy Rebate Offer program using IPMVP guidelines," Applied Energy, Elsevier, vol. 87(2), pages 691-702, February.
    11. Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Mathematical description for the measurement and verification of energy efficiency improvement," Applied Energy, Elsevier, vol. 111(C), pages 247-256.
    12. Walter, Travis & Price, Phillip N. & Sohn, Michael D., 2014. "Uncertainty estimation improves energy measurement and verification procedures," Applied Energy, Elsevier, vol. 130(C), pages 230-236.
    13. Dalgleish, A.Z & Grobler, L.J, 2003. "Measurement and verification of a motor sequencing controller on a conveyor belt," Energy, Elsevier, vol. 28(9), pages 913-927.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    2. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    3. Angeliki Mavrigiannaki & Kostas Gobakis & Dionysia Kolokotsa & Kostas Kalaitzakis & Anna Laura Pisello & Cristina Piselli & Rajat Gupta & Matt Gregg & Marina Laskari & Maria Saliari & Margarita-Niki A, 2020. "Measurement and Verification of Zero Energy Settlements: Lessons Learned from Four Pilot Cases in Europe," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    4. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
    5. Olinga, Zadok & Xia, Xiaohua & Ye, Xianming, 2017. "A cost-effective approach to handle measurement and verification uncertainties of energy savings," Energy, Elsevier, vol. 141(C), pages 1600-1609.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    2. Olinga, Zadok & Xia, Xiaohua & Ye, Xianming, 2017. "A cost-effective approach to handle measurement and verification uncertainties of energy savings," Energy, Elsevier, vol. 141(C), pages 1600-1609.
    3. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
    4. Ikuzwe, Alice & Xia, Xiaohua & Ye, Xianming, 2020. "Maintenance optimization incorporating lumen degradation failure for energy-efficient lighting retrofit projects," Applied Energy, Elsevier, vol. 267(C).
    5. Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
    6. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2014. "Optimal sampling plan for clean development mechanism lighting projects with lamp population decay," Applied Energy, Elsevier, vol. 136(C), pages 1184-1192.
    7. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    8. Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Mathematical description for the measurement and verification of energy efficiency improvement," Applied Energy, Elsevier, vol. 111(C), pages 247-256.
    9. Angeliki Mavrigiannaki & Kostas Gobakis & Dionysia Kolokotsa & Kostas Kalaitzakis & Anna Laura Pisello & Cristina Piselli & Rajat Gupta & Matt Gregg & Marina Laskari & Maria Saliari & Margarita-Niki A, 2020. "Measurement and Verification of Zero Energy Settlements: Lessons Learned from Four Pilot Cases in Europe," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    10. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    11. Fu, Hongxiang & Baltazar, Juan-Carlos & Claridge, David E., 2021. "Review of developments in whole-building statistical energy consumption models for commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    13. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    14. Ikuzwe, Alice & Ye, Xianming & Xia, Xiaohua, 2020. "Energy-maintenance optimization for retrofitted lighting system incorporating luminous flux degradation to enhance visual comfort," Applied Energy, Elsevier, vol. 261(C).
    15. Wu, Zhou & Wang, Bo & Xia, Xiaohua, 2016. "Large-scale building energy efficiency retrofit: Concept, model and control," Energy, Elsevier, vol. 109(C), pages 456-465.
    16. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    17. Carstens, Herman & Xia, Xiaohua & Ye, Xianming, 2014. "Improvements to longitudinal Clean Development Mechanism sampling designs for lighting retrofit projects," Applied Energy, Elsevier, vol. 126(C), pages 256-265.
    18. Ye, Yuxiang & Koch, Steven F. & Zhang, Jiangfeng, 2018. "Determinants of household electricity consumption in South Africa," Energy Economics, Elsevier, vol. 75(C), pages 120-133.
    19. Granderson, Jessica & Touzani, Samir & Custodio, Claudine & Sohn, Michael D. & Jump, David & Fernandes, Samuel, 2016. "Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings," Applied Energy, Elsevier, vol. 173(C), pages 296-308.
    20. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:580-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.