IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4122-d1716746.html
   My bibliography  Save this article

A Comparative Study of Statistical and Machine Learning Methods for Solar Irradiance Forecasting Using the Folsom PLC Dataset

Author

Listed:
  • Oscar Trull

    (Department of Applied Statistics, Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Juan Carlos García-Díaz

    (Department of Applied Statistics, Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Angel Peiró-Signes

    (Department of Business Management, Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

The increasing penetration of photovoltaic solar energy has intensified the need for accurate production forecasting to ensure efficient grid operation. This study presents a critical comparison of traditional statistical methods and machine learning approaches for forecasting solar irradiance using the benchmark Folsom PLC dataset. Two primary research questions are addressed: whether machine learning models outperform traditional techniques, and whether time series modelling improves prediction accuracy. The analysis includes an evaluation of a range of models, including statistical regressions (OLS, LASSO, ridge), regression trees, neural networks, LSTM, and random forests, which are applied to physical modelling and time series approaches. The results reveal that although machine learning methods can outperform statistical models, particularly with the inclusion of exogenous weather features, they are not universally superior across all forecasting horizons. Furthermore, pure time series approach models yield lower performance. However, a hybrid approach in which physical models are integrated with machine learning demonstrates significantly improved accuracy. These findings highlight the value of hybrid models for photovoltaic forecasting and suggest strategic directions for operational implementation.

Suggested Citation

  • Oscar Trull & Juan Carlos García-Díaz & Angel Peiró-Signes, 2025. "A Comparative Study of Statistical and Machine Learning Methods for Solar Irradiance Forecasting Using the Folsom PLC Dataset," Energies, MDPI, vol. 18(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4122-:d:1716746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Haupt & Oscar Trull & Mathias Moog, 2025. "PV Production Forecast Using Hybrid Models of Time Series with Machine Learning Methods," Energies, MDPI, vol. 18(11), pages 1-17, May.
    2. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
    3. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Weihui Xu & Zhaoke Wang & Weishu Wang & Jian Zhao & Miaojia Wang & Qinbao Wang, 2024. "Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners," Energies, MDPI, vol. 17(4), pages 1-19, February.
    6. Qiangsheng Bu & Shuyi Zhuang & Fei Luo & Zhigang Ye & Yubo Yuan & Tianrui Ma & Tao Da, 2024. "Improving Solar Radiation Forecasting in Cloudy Conditions by Integrating Satellite Observations," Energies, MDPI, vol. 17(24), pages 1-20, December.
    7. Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza, 2017. "Quantification of Forecast Error Costs of Photovoltaic Prosumers in Italy," Energies, MDPI, vol. 10(11), pages 1-17, November.
    8. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    9. Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2023. "Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach," Renewable Energy, Elsevier, vol. 216(C).
    10. Victor Oliveira Santos & Felipe Pinto Marinho & Paulo Alexandre Costa Rocha & Jesse Van Griensven Thé & Bahram Gharabaghi, 2024. "Application of Quantum Neural Network for Solar Irradiance Forecasting: A Case Study Using the Folsom Dataset, California," Energies, MDPI, vol. 17(14), pages 1-26, July.
    11. Kristijan Brecl & Marko Topič, 2018. "Photovoltaics (PV) System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions," Energies, MDPI, vol. 11(5), pages 1-12, May.
    12. Polasek, Tomas & Čadík, Martin, 2023. "Predicting photovoltaic power production using high-uncertainty weather forecasts," Applied Energy, Elsevier, vol. 339(C).
    13. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    14. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Nie, Yuhao & Paletta, Quentin & Scott, Andea & Pomares, Luis Martin & Arbod, Guillaume & Sgouridis, Sgouris & Lasenby, Joan & Brandt, Adam, 2024. "Sky image-based solar forecasting using deep learning with heterogeneous multi-location data: Dataset fusion versus transfer learning," Applied Energy, Elsevier, vol. 369(C).
    3. Al-Dahidi, Sameer & Alrbai, Mohammad & Rinchi, Bilal & Alahmer, Hussein & Al-Ghussain, Loiy & Hayajneh, Hassan S. & Alahmer, Ali, 2025. "Techno-economic implications and cost of forecasting errors in solar PV power production using optimized deep learning models," Energy, Elsevier, vol. 323(C).
    4. Paolo Di Leo & Alessandro Ciocia & Gabriele Malgaroli & Filippo Spertino, 2025. "Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review," Energies, MDPI, vol. 18(8), pages 1-28, April.
    5. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    6. Di Piazza, A. & Di Piazza, M.C. & La Tona, G. & Luna, M., 2021. "An artificial neural network-based forecasting model of energy-related time series for electrical grid management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 294-305.
    7. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    8. Ukwuoma, Chiagoziem C. & Cai, Dongsheng & Bamisile, Olusola & Yin, Hongbo & Nneji, Grace Ugochi & Monday, Happy N. & Oluwasanmi, Ariyo & Huang, Qi, 2024. "An attention fused sequence -to-sequence convolutional neural network for accurate solar irradiance forecasting and prediction using sky images," Renewable Energy, Elsevier, vol. 237(PB).
    9. Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).
    10. Li, Jiaqian & Rao, Congjun & Gao, Mingyun & Xiao, Xinping & Goh, Mark, 2025. "Efficient calculation of distributed photovoltaic power generation power prediction via deep learning," Renewable Energy, Elsevier, vol. 246(C).
    11. Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
    12. Xu, Shijie & Ma, Hui & Ekanayake, Chandima & Cui, Yi, 2025. "Swin transformer-based transferable PV forecasting for new PV sites with insufficient PV generation data," Renewable Energy, Elsevier, vol. 246(C).
    13. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Wen, Haoran & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Wen, Huiqing & Yan, Ke, 2023. "A regional solar forecasting approach using generative adversarial networks with solar irradiance maps," Renewable Energy, Elsevier, vol. 216(C).
    15. Kostevšek, Anja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Papa, Gregor & Petek, Janez, 2016. "The concept of an ecosystem model to support the transformation to sustainable energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1460-1469.
    16. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    17. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    18. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    19. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Jiawei Sun & Zhe Chen & Renfu Zhang & Menghan Yin & Ying Zhu & Jiacheng Hu & Qinqi Zhou & Peipei Shao & Qingjiao Huang & Dongyun Ma & Rui-Tao Wen & Jinmin Wang, 2025. "Electrochromic smart windows with co-intercalation of cations and anions for multi-band regulations," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4122-:d:1716746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.