IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4057-d1714061.html
   My bibliography  Save this article

Electricity Load Forecasting Method Based on the GRA-FEDformer Algorithm

Author

Listed:
  • Xin Jin

    (Electric Power Research Institute, China Southern Power Grid Company Limited, Guangzhou 510000, China)

  • Tingzhe Pan

    (Electric Power Research Institute, China Southern Power Grid Company Limited, Guangzhou 510000, China)

  • Heyang Yu

    (Electric Power Research Institute, China Southern Power Grid Company Limited, Guangzhou 510000, China)

  • Zongyi Wang

    (Electric Power Research Institute, China Southern Power Grid Company Limited, Guangzhou 510000, China)

  • Wangzhang Cao

    (Electric Power Research Institute, China Southern Power Grid Company Limited, Guangzhou 510000, China)

Abstract

In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift of the forecasting trend often occurs. Therefore, this paper proposes a gray relation analysis–frequency-enhanced decomposition transformer (GRA-FEDformer) method for forecasting power loads in power systems. Firstly, considering the impact of different weather factors on power loads, the correlation between various factors and power loads was analyzed using the GRA method to screen out the high-correlation factors as model inputs. Secondly, a frequency decomposition method for long short-time-scale components was utilized. Its combination with the transformer-based model can give the deep learning model an ability to simultaneously capture the fluctuating behavior of the short time scale and the overall trend of changes in the long time scale in power loads. The experimental results show that the proposed method had better forecasting performance than the other methods for a one-year dataset in a region of Morocco. In particular, the advantages of the proposed method were more obvious in the forecasting task with a longer forecasting length.

Suggested Citation

  • Xin Jin & Tingzhe Pan & Heyang Yu & Zongyi Wang & Wangzhang Cao, 2025. "Electricity Load Forecasting Method Based on the GRA-FEDformer Algorithm," Energies, MDPI, vol. 18(15), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4057-:d:1714061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    2. Jiang, Yuqi & Gao, Tianlu & Dai, Yuxin & Si, Ruiqi & Hao, Jun & Zhang, Jun & Gao, David Wenzhong, 2022. "Very short-term residential load forecasting based on deep-autoformer," Applied Energy, Elsevier, vol. 328(C).
    3. Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xian, Sidong & Feng, Miaomiao & Cheng, Yue, 2023. "Incremental nonlinear trend fuzzy granulation for carbon trading time series forecast," Applied Energy, Elsevier, vol. 352(C).
    2. Liu, Jincheng & Li, Teng, 2024. "Multi-step power forecasting for regional photovoltaic plants based on ITDE-GAT model," Energy, Elsevier, vol. 293(C).
    3. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
    4. Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
    5. Bujin Shi & Xinbo Zhou & Peilin Li & Wenyu Ma & Nan Pan, 2023. "An IHPO-WNN-Based Federated Learning System for Area-Wide Power Load Forecasting Considering Data Security Protection," Energies, MDPI, vol. 16(19), pages 1-20, October.
    6. Moghadam, Saman Salehi & Gholamian, Mohammad Reza & Zahedi, Rahim & Shaqaqifar, Maziar, 2024. "Designing a multi-purpose network of sustainable and closed-loop renewable energy supply chain, considering reliability and circular economy," Applied Energy, Elsevier, vol. 369(C).
    7. Lu, Yakai & Peng, Xingyu & Li, Conghui & Tian, Zhe & Kong, Xiangfei & Niu, Jide, 2025. "Few-sample model training assistant: A meta-learning technique for building heating load forecasting based on simulation data," Energy, Elsevier, vol. 317(C).
    8. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    9. Li, Hao & Ma, Gang & Wang, Bo & Wang, Shu & Li, Wenhao & Meng, Yuxiang, 2025. "Multi-modal feature fusion model based on TimesNet and T2T-ViT for ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 240(C).
    10. Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
    11. Siqiong Dai & Liang Yuan & Jiayi Zhong & Xubin Liu & Zhangjie Liu, 2025. "Forecasting Residential EV Charging Pile Capacity in Urban Power Systems: A Cointegration–BiLSTM Hybrid Approach," Sustainability, MDPI, vol. 17(14), pages 1-18, July.
    12. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    13. Raiden Skala & Mohamed Ahmed T. A. Elgalhud & Katarina Grolinger & Syed Mir, 2023. "Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging," Energies, MDPI, vol. 16(10), pages 1-21, May.
    14. Luo, Zheng & Lin, Xiaojie & Qiu, Tianyue & Li, Manjie & Zhong, Wei & Zhu, Lingkai & Liu, Shuangcui, 2024. "Investigation of hybrid adversarial-diffusion sample generation method of substations in district heating system," Energy, Elsevier, vol. 288(C).
    15. Wang, Danhao & Peng, Daogang & Huang, Dongmei & Zhao, Huirong & Qu, Bogang, 2025. "MMEMformer: A multi-scale memory-enhanced transformer framework for short-term load forecasting in integrated energy systems," Energy, Elsevier, vol. 322(C).
    16. Li, Tailu & Zhang, Yao & Wang, Jingyi & Jin, Fengyun & Gao, Ruizhao, 2024. "Techno-economic and environmental performance of a novel thermal station characterized by electric power generation recovery as by-product," Renewable Energy, Elsevier, vol. 221(C).
    17. Ouyang, Jing & Zuo, Zongxu & Wang, Qin & Duan, Qiaoning & Zhu, Xuanmian & Zhang, Yang, 2025. "Seasonal distribution analysis and short-term PV power prediction method based on decomposition optimization Deep-Autoformer," Renewable Energy, Elsevier, vol. 246(C).
    18. Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
    19. Song, Jiancai & Zhu, Shuo & Li, Wen & Xue, Guixiang & Gao, Xiaoyu, 2025. "A novel robust heating load prediction algorithm based on hybrid residual network and temporal fusion transformer model," Energy, Elsevier, vol. 318(C).
    20. Yang, Kun & Cheng, Zishu & Li, Mingchen & Wang, Shouyang & Wei, Yunjie, 2024. "Fortify the investment performance of crude oil market by integrating sentiment analysis and an interval-based trading strategy," Applied Energy, Elsevier, vol. 353(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4057-:d:1714061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.