IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3922-d1708013.html
   My bibliography  Save this article

Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development

Author

Listed:
  • Agnieszka Operacz

    (Department of Sanitary Engineering and Water Management, University of Agriculture in Krakow, Mickiewicza Av. 21, 31-120 Krakow, Poland)

  • Bogusław Bielec

    (Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7A Str., 31-261 Krakow, Poland)

  • Tomasz Operacz

    (Polish Geological Institute—National Research Institute, Carpathian Branch in Krakow, Skrzatów 1 Str., 31-560 Krakow, Poland)

  • Agnieszka Zachora-Buławska

    (Department of Sanitary Engineering and Water Management, University of Agriculture in Krakow, Mickiewicza Av. 21, 31-120 Krakow, Poland)

  • Karolina Migdał

    (Department of Sanitary Engineering and Water Management, University of Agriculture in Krakow, Mickiewicza Av. 21, 31-120 Krakow, Poland)

Abstract

The global shift towards the use of renewable energy is essential to ensure sustainable development, and geothermal energy stands out as a suitable option that can support various cascading projects. Spent geothermal water (SGW) requires proper treatment to ensure that it does not become an environmental burden. Typically, companies often face the dilemma of choosing between discharging spent geothermal water (SGW) into surface waters or injecting it into rock masses, and the economic and environmental impacts of the decision made determines the feasibility of geothermal plant development. In this study, we aimed to comprehensively assess the technical, economic, and environmental feasibility of SGW injection into rock masses. To this end, we employed a comprehensive analytical approach using the Chochołów GT-1 geothermal injection borehole in Poland as a reference case. We also performed drilling and hydrogeological testing, characterized rock samples in the laboratory, and corrected hydrodynamic parameters for thermal lift effects to ensure accurate aquifer characterization. The results obtained highlight the importance of correcting hydrogeological parameters for thermal effects, which if neglected can lead to a significant overestimation of the calculated hydrogeological parameters. Based on our analysis, we developed a framework for assessing SGW injection feasibility that integrates detailed hydrogeological and geotechnical analyses with environmental risk assessment to ensure sustainable geothermal resource exploitation. This framework should be mandatory for planning new geothermal power plants or complexes worldwide. Our results also emphasize the need for adequate SGW management so as to ensure that the benefits of using a renewable and zero-emission resource, such as geothermal energy, are not compromised by the low absorption capacity of rock masses or adverse environmental effects.

Suggested Citation

  • Agnieszka Operacz & Bogusław Bielec & Tomasz Operacz & Agnieszka Zachora-Buławska & Karolina Migdał, 2025. "Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development," Energies, MDPI, vol. 18(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3922-:d:1708013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malek, Adam E. & Adams, Benjamin M. & Rossi, Edoardo & Schiegg, Hans O. & Saar, Martin O., 2022. "Techno-economic analysis of Advanced Geothermal Systems (AGS)," Renewable Energy, Elsevier, vol. 186(C), pages 927-943.
    2. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    3. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    4. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    5. Chai, Rukuan & Liu, Yuetian & Xue, Liang & Rui, Zhenhua & Zhao, Ruicheng & Wang, Jingru, 2022. "Formation damage of sandstone geothermal reservoirs: During decreased salinity water injection," Applied Energy, Elsevier, vol. 322(C).
    6. Agnieszka Operacz & Bogusław Bielec & Barbara Tomaszewska & Michał Kaczmarczyk, 2020. "Physicochemical Composition Variability and Hydraulic Conditions in a Geothermal Borehole—The Latest Study in Podhale Basin, Poland," Energies, MDPI, vol. 13(15), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    2. Tomasz Sliwa & Tomasz Kowalski & Dominik Cekus & Aneta Sapińska-Śliwa, 2021. "Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers," Energies, MDPI, vol. 14(16), pages 1-13, August.
    3. Hua Dong & Kun Yang & Guoqing Bai, 2022. "Evaluation of TPGU using entropy - improved TOPSIS - GRA method in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-24, January.
    4. Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
    5. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    6. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    7. Reyes-Antonio, Claudio Antonio & Iglesias-Silva, Gustavo Arturo & Rubio-Maya, Carlos & Fuentes-Cortés, Luis Fabián, 2024. "Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations," Energy, Elsevier, vol. 294(C).
    8. Leng Tian & Xiaolong Chai & Lei Zhang & Wenbo Zhang & Yuan Zhu & Jiaxin Wang & Jianguo Wang, 2024. "Study on Compatibility Evaluation of Multilayer Co-Production to Enhance Recovery of Water Flooding in Oil Reservoir," Energies, MDPI, vol. 17(15), pages 1-13, July.
    9. Dong, Shihao & Yu, Yuelong & Li, Bingxue & Ni, Long, 2024. "Geologic and thermal conductivity analysis based on geophysical test and combined modeling," Energy, Elsevier, vol. 310(C).
    10. Loschetter, A. & Kervévan, C. & Stead, R. & Le Guénan, T. & Dezayes, C. & Clarke, N., 2025. "Integrating geothermal energy and carbon capture and storage technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    11. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    12. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.
    13. Soni, Vikram & Darzi, Alireza & McPhee, Hannah & Saber, Sepehr & Zargartalebi, Mohammad & Riordon, Jason & Ozden, Adnan & Holmes, Michael & Zatonski, Vlad & Toews, Matthew & Sinton, David, 2023. "Performance analysis of phase change slurries for closed-loop geothermal system," Renewable Energy, Elsevier, vol. 216(C).
    14. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    15. Colmenar-Santos, Antonio & Folch-Calvo, Martin & Rosales-Asensio, Enrique & Borge-Diez, David, 2016. "The geothermal potential in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 865-886.
    16. Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential," Energies, MDPI, vol. 13(14), pages 1-29, July.
    17. Kheiralipour, Kamran & Khoobbakht, Mohammad & Karimi, Mahmoud, 2024. "Effect of biodiesel on environmental impacts of diesel mechanical power generation by life cycle assessment," Energy, Elsevier, vol. 289(C).
    18. Li, Jingyi & Gallego-Schmid, Alejandro & Stamford, Laurence, 2024. "Integrated sustainability assessment of repurposing onshore abandoned wells for geothermal power generation," Applied Energy, Elsevier, vol. 359(C).
    19. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
    20. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3922-:d:1708013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.