IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3896-d1706992.html
   My bibliography  Save this article

Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy

Author

Listed:
  • Yongjia Wang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China
    Key Laboratory of Hubei Province for Operation and Control of Cascade Hydropower Stations, China Three Gorges University, Yichang 443002, China)

  • Hao Zhong

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China
    Key Laboratory of Hubei Province for Operation and Control of Cascade Hydropower Stations, China Three Gorges University, Yichang 443002, China)

  • Xun Li

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China
    Key Laboratory of Hubei Province for Operation and Control of Cascade Hydropower Stations, China Three Gorges University, Yichang 443002, China)

  • Wenzhuo Hu

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China
    Key Laboratory of Hubei Province for Operation and Control of Cascade Hydropower Stations, China Three Gorges University, Yichang 443002, China)

  • Zhenhui Ouyang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China
    Key Laboratory of Hubei Province for Operation and Control of Cascade Hydropower Stations, China Three Gorges University, Yichang 443002, China)

Abstract

Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements.

Suggested Citation

  • Yongjia Wang & Hao Zhong & Xun Li & Wenzhuo Hu & Zhenhui Ouyang, 2025. "Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy," Energies, MDPI, vol. 18(15), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3896-:d:1706992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gan, Wei & Ai, Xiaomeng & Fang, Jiakun & Yan, Mingyu & Yao, Wei & Zuo, Wenping & Wen, Jinyu, 2019. "Security constrained co-planning of transmission expansion and energy storage," Applied Energy, Elsevier, vol. 239(C), pages 383-394.
    2. Siqiang Liu & Wei Ye & Yongfei Wu & Ze Ye, 2025. "An Improved Tiered Electricity Pricing Scheme Considering Energy Saving and Carbon Reduction, Cross-Subsidy Handling, and User Demands," Energies, MDPI, vol. 18(10), pages 1-26, May.
    3. Diandian Hu & Tao Wang, 2023. "Optimizing Power Demand Side Response Strategy: A Study Based on Double Master–Slave Game Model of Multi-Objective Multi-Universe Optimization," Energies, MDPI, vol. 16(10), pages 1-16, May.
    4. Shuxin Liu & Jing Xu & Chaojian Xing & Yang Liu & Ersheng Tian & Jia Cui & Junzhu Wei, 2023. "Study on Dynamic Pricing Strategy for Industrial Power Users Considering Demand Response Differences in Master–Slave Game," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    5. Melissa-Jade Williams & Choong-Koo Chang, 2024. "The Optimal Integration of Virtual Power Plants for the South African National Grid Based on an Energy Mix as per the Integrated Resource Plan 2019: A Review," Energies, MDPI, vol. 17(24), pages 1-35, December.
    6. Duan, Jiandong & Liu, Fan & Yang, Yao, 2022. "Optimal operation for integrated electricity and natural gas systems considering demand response uncertainties," Applied Energy, Elsevier, vol. 323(C).
    7. Yang Li & Feilong Hong & Xiaohui Ge & Xuesong Zhang & Bo Zhao & Feng Wu, 2023. "Optimal Capacity Configuration of Pumped-Storage Units Used to Retrofit Cascaded Hydropower Stations," Energies, MDPI, vol. 16(24), pages 1-22, December.
    8. Yang, Yesen & Li, Zhengmao & Mandapaka, Pradeep V. & Lo, Edmond Y.M., 2023. "Risk-averse restoration of coupled power and water systems with small pumped-hydro storage and stochastic rooftop renewables," Applied Energy, Elsevier, vol. 339(C).
    9. Zhao, Zhipeng & Yu, Zhihui & Kang, Yongxi & Wang, Jin & Cheng, Chuntian & Su, Huaying, 2025. "Hydro-photovoltaic complementary dispatch based on active regulation of cascade hydropower considering multi-transmission channel constraints," Applied Energy, Elsevier, vol. 377(PC).
    10. Seward, William & Qadrdan, Meysam & Jenkins, Nick, 2022. "Quantifying the value of distributed battery storage to the operation of a low carbon power system," Applied Energy, Elsevier, vol. 305(C).
    11. Liqing Zhang & Chunzheng Tian & Zhiheng Li & Shuo Yin & Anbang Xie & Peng Wang & Yihong Ding, 2024. "The Impact of Participation Ratio and Bidding Strategies on New Energy’s Involvement in Electricity Spot Market Trading under Marketization Trends—An Empirical Analysis Based on Henan Province, China," Energies, MDPI, vol. 17(17), pages 1-17, September.
    12. Nicola Blasuttigh & Simone Negri & Alessandro Massi Pavan, 2025. "Optimal ATECO-Based Clustering and Photovoltaic System Sizing for Industrial Users in Renewable Energy Communities," Energies, MDPI, vol. 18(4), pages 1-29, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    2. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    3. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    4. Zhao, Bo & Ren, Junzhi & Chen, Jian & Lin, Da & Qin, Ruwen, 2020. "Tri-level robust planning-operation co-optimization of distributed energy storage in distribution networks with high PV penetration," Applied Energy, Elsevier, vol. 279(C).
    5. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    6. Zhou, Yongcheng & Wei, Fanchao & Li, Shuangxiu & Wang, Zhonghao & Liu, Jinfu & Yu, Daren, 2025. "Data center load modeling through optimal energy consumption characteristics: A path to simultaneously enhance energy efficiency and demand response quality," Applied Energy, Elsevier, vol. 393(C).
    7. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    8. Frazier, A. Will & Cole, Wesley & Denholm, Paul & Greer, Daniel & Gagnon, Pieter, 2020. "Assessing the potential of battery storage as a peaking capacity resource in the United States," Applied Energy, Elsevier, vol. 275(C).
    9. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    10. Tan, Mao & Li, Zibin & Su, Yongxin & Ren, Yuling & Wang, Ling & Wang, Rui, 2024. "Dual time-scale robust optimization for energy management of distributed energy community considering source-load uncertainty," Renewable Energy, Elsevier, vol. 226(C).
    11. Liu, Fan & Duan, Jiandong & Wu, Chen & Tian, Qinxing, 2024. "Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas," Renewable Energy, Elsevier, vol. 227(C).
    12. Jianzu Hu & Yuefeng Wang & Fan Cheng & Hanqing Shi, 2024. "A Long-Term Power Supply Risk Evaluation Method for China Regional Power System Based on Probabilistic Production Simulation," Energies, MDPI, vol. 17(11), pages 1-23, May.
    13. Zheng, Shunlin & Qi, Qi & Sun, Yi & Ai, Xin, 2023. "Integrated demand response considering substitute effect and time-varying response characteristics under incomplete information," Applied Energy, Elsevier, vol. 333(C).
    14. Dongwen Chen & Zheng Chu, 2024. "Enhancing Power Supply Flexibility in Renewable Energy Systems with Optimized Energy Dispatch in Coupled CHP, Heat Pump, and Thermal Storage," Energies, MDPI, vol. 17(12), pages 1-29, June.
    15. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    16. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
    17. Sara Lumbreras & Jesús David Gómez & Erik Francisco Alvarez & Sebastien Huclin, 2022. "The Human Factor in Transmission Network Expansion Planning: The Grid That a Sustainable Energy System Needs," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    18. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
    19. Karol Sidor & Piotr Miller & Robert Małkowski & Michał Izdebski, 2024. "Optimization of Division and Reconfiguration Locations of the Medium-Voltage Power Grid Based on Forecasting the Level of Load and Generation from Renewable Energy Sources," Energies, MDPI, vol. 17(19), pages 1-21, October.
    20. Michas, Serafeim & Flamos, Alexandros, 2023. "Are there preferable capacity combinations of renewables and storage? Exploratory quantifications along various technology deployment pathways," Energy Policy, Elsevier, vol. 174(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3896-:d:1706992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.