IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925008256.html
   My bibliography  Save this article

Data center load modeling through optimal energy consumption characteristics: A path to simultaneously enhance energy efficiency and demand response quality

Author

Listed:
  • Zhou, Yongcheng
  • Wei, Fanchao
  • Li, Shuangxiu
  • Wang, Zhonghao
  • Liu, Jinfu
  • Yu, Daren

Abstract

In an era defined by the rapid advancement of artificial intelligence and the global pursuit of “carbon neutrality,” data centers face the dual challenge of enhancing energy efficiency while ensuring high-quality participation in power system demand response. However, conventional linear load models used in demand response programming often force data centers into a trade-off: sacrificing energy efficiency to ensure response quality, or vice versa. This paper presents a hierarchical load modeling framework that captures the optimal energy consumption characteristics of data centers to mitigate this conflict. At the foundational layer, a fine-grained, cross-system energy consumption model is developed to capture the intricate electrical-thermal-performance interactions among the computing, cooling, and power conditioning systems within the data center. Solving the energy optimization problem at this layer yields the optimal energy consumption characteristics of the data center. At the upper layer, these characteristics are analyzed and abstracted into a weakly nonlinear demand response-oriented load model, composed of four patterns that together form a piecewise function—two linear and two nonlinear regions—each corresponding to distinct workload conditions. The nonlinear relations are simplified from cubic to quadratic forms without significant loss of accuracy. Experimental results show that the linear regions achieve R2≥0.9999 with mean relative errors below 0.1404 %, while the quadratic regions reach R2≥0.9982 with mean relative errors under 0.6259 %. Applied to a typical demand response program, the proposed model reduces electricity costs by 13.40 % to 30.21 %, energy consumption by 24.19 % to 38.31 %, and cumulative curtailment deficit by 98.09 %, compared to conventional linear models.

Suggested Citation

  • Zhou, Yongcheng & Wei, Fanchao & Li, Shuangxiu & Wang, Zhonghao & Liu, Jinfu & Yu, Daren, 2025. "Data center load modeling through optimal energy consumption characteristics: A path to simultaneously enhance energy efficiency and demand response quality," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008256
    DOI: 10.1016/j.apenergy.2025.126095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alaperä, Ilari & Honkapuro, Samuli & Paananen, Janne, 2018. "Data centers as a source of dynamic flexibility in smart girds," Applied Energy, Elsevier, vol. 229(C), pages 69-79.
    2. Zeng, Bo & Zhou, Yinyu & Xu, Xinzhu & Cai, Danting, 2024. "Bi-level planning approach for incorporating the demand-side flexibility of cloud data centers under electricity-carbon markets," Applied Energy, Elsevier, vol. 357(C).
    3. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    4. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang, 2021. "Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities," Applied Energy, Elsevier, vol. 301(C).
    5. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    6. Chen, Min & Gao, Ciwei & Song, Meng & Chen, Songsong & Li, Dezhi & Liu, Qiang, 2020. "Internet data centers participating in demand response: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Xu, Da & Xiang, Shizhe & Bai, Ziyi & Wei, Juan & Gao, Menglu, 2023. "Optimal multi-energy portfolio towards zero carbon data center buildings in the presence of proactive demand response programs," Applied Energy, Elsevier, vol. 350(C).
    9. Wang, Jiangjiang & Deng, Hongda & Liu, Yi & Guo, Zeqing & Wang, Yongzhen, 2023. "Coordinated optimal scheduling of integrated energy system for data center based on computing load shifting," Energy, Elsevier, vol. 267(C).
    10. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    11. Nicola Jones, 2018. "How to stop data centres from gobbling up the world’s electricity," Nature, Nature, vol. 561(7722), pages 163-166, September.
    12. Yang, Ting & Zhao, Yingjie & Pen, Haibo & Wang, Zhaoxia, 2018. "Data center holistic demand response algorithm to smooth microgrid tie-line power fluctuation," Applied Energy, Elsevier, vol. 231(C), pages 277-287.
    13. Yan Bai & Lijun Gu, 2017. "Chip Temperature-Based Workload Allocation for Holistic Power Minimization in Air-Cooled Data Center," Energies, MDPI, vol. 10(12), pages 1-19, December.
    14. Seward, William & Qadrdan, Meysam & Jenkins, Nick, 2022. "Quantifying the value of distributed battery storage to the operation of a low carbon power system," Applied Energy, Elsevier, vol. 305(C).
    15. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    2. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    3. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    4. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
    5. Cao, Yujie & Cao, Fang & Wang, Yajing & Wang, Jianxiao & Wu, Lei & Ding, Zhaohao, 2024. "Managing data center cluster as non-wire alternative: A case in balancing market," Applied Energy, Elsevier, vol. 360(C).
    6. Matteo Manganelli & Alessandro Soldati & Luigi Martirano & Seeram Ramakrishna, 2021. "Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    7. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    8. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    9. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.
    10. Nasir Asadov & Vlad C. Coroamă & Matteo Franzil & Stefano Galantino & Matthias Finkbeiner, 2025. "Carbon-Aware Spatio-Temporal Workload Shifting in Edge–Cloud Environments: A Review and Novel Algorithm," Sustainability, MDPI, vol. 17(14), pages 1-27, July.
    11. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    12. Bian, Yifan & Xie, Lirong & Ma, Lan & Cui, Chuanshi, 2025. "A novel two-stage energy sharing model for data center cluster considering integrated demand response of multiple loads," Applied Energy, Elsevier, vol. 384(C).
    13. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    14. Liu, Xiaoou, 2024. "Research on collaborative scheduling of internet data center and regional integrated energy system based on electricity-heat-water coupling," Energy, Elsevier, vol. 292(C).
    15. Wang, Fengjuan & Lv, Chengwei, 2024. "A data center expansion scheme considering net-zero carbon operation: Optimization of geographical location, on-site renewable utilization and green certificate purchase," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    16. Silva, C.A. & Vilaça, R. & Pereira, A. & Bessa, R.J., 2024. "A review on the decarbonization of high-performance computing centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Sun, Yuyan & Tang, Wenhu, 2025. "Combined cloud and electricity portfolio optimization for cloud service providers," Applied Energy, Elsevier, vol. 377(PA).
    18. Fan, Junqiu & Yan, Rujing & He, Yu & Zhang, Jing & Zhao, Weixing & Liu, Mingshun & An, Su & Ma, Qingfeng, 2025. "Stochastic optimization of combined energy and computation task scheduling strategies of hybrid system with multi-energy storage system and data center," Renewable Energy, Elsevier, vol. 242(C).
    19. Jiangang Huang & Xinya Chen & Xing Zhao, 2024. "How Digital Technology Reduces Carbon Emissions: From the Perspective of Green Innovation, Industry Upgrading, and Energy Transition," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 19294-19326, December.
    20. Wang, Jiangjiang & Deng, Hongda & Liu, Yi & Guo, Zeqing & Wang, Yongzhen, 2023. "Coordinated optimal scheduling of integrated energy system for data center based on computing load shifting," Energy, Elsevier, vol. 267(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.