IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3802-d1703900.html
   My bibliography  Save this article

Modification of Canola Oil Properties Using Ethyl Oleate and n -Hexane

Author

Listed:
  • Katarzyna Szymczyk

    (Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland)

  • Anna Zdziennicka

    (Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland)

  • Bronisław Jańczuk

    (Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland)

Abstract

Canola oil (rapeseed oil, RO), despite being a potential source of biofuel, needs some modifications of its properties to be effectively used as a fuel. The reason RO needs to be altered lies above all in its viscosity, fatty acid composition, and other chemical properties, which affect its efficiency as a fuel. These properties of RO can be changed by mixing it with various bioadditives, among other methods. For this reason, studies of the physicochemical properties of mixtures including RO, n -hexane (Hex), and ethyl oleate (EO) were carried out. These mixtures were prepared at a constant EO concentration and a ratio of n -hexane in the mixture with RO in the range from 0 to 1. For these mixtures, the surface tension, density and viscosity were measured. The obtained results were considered to determine the chemical properties of particular components of the mixtures. From these considerations, it results that based on the properties of these components, the surface tension and density of the studied mixtures can be described, and their viscosity can be predicted. These facts and results of the measurements suggest that based on the properties of the mixture components, we can determine the composition of a mixture whose surface tension, density, and viscosity are close to those of diesel fuel. The results obtained from the measurements also suggest that the addition of 10% n -hexane to RO causes a considerable reduction in the surface tension, viscosity, and density of RO. The addition of 10% of EO to this mixture results in a further reduction in RO + Hex viscosity and increases its density and surface tension slightly. As such, a mixture of RO with Hex and EO may be appropriate as a biofuel.

Suggested Citation

  • Katarzyna Szymczyk & Anna Zdziennicka & Bronisław Jańczuk, 2025. "Modification of Canola Oil Properties Using Ethyl Oleate and n -Hexane," Energies, MDPI, vol. 18(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3802-:d:1703900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Khan & Kadir Ozaltin & Damiano Spagnuolo & Andres Bernal-Ballen & Maxim V. Piskunov & Antonio Di Martino, 2023. "Biodiesel from Rapeseed and Sunflower Oil: Effect of the Transesterification Conditions and Oxidation Stability," Energies, MDPI, vol. 16(2), pages 1-13, January.
    2. Rafał Longwic & Przemysław Sander & Bronisław Jańczuk & Anna Zdziennicka & Katarzyna Szymczyk, 2021. "Modification of Canola Oil Physicochemical Properties by Hexane and Ethanol with Regards of Its Application in Diesel Engine," Energies, MDPI, vol. 14(15), pages 1-14, July.
    3. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    4. Gotovuša, Mia & Medić, Mihovil & Faraguna, Fabio & Šibalić, Matea & Konjević, Lucija & Vuković, Jelena Parlov & Racar, Marko, 2022. "Fatty acids propyl esters: Synthesis optimization and application properties of their blends with diesel and 1-propanol," Renewable Energy, Elsevier, vol. 185(C), pages 655-664.
    5. Iwona Szczepaniak & Igor Olech & Elżbieta Jadwiga Szymańska, 2025. "The Use of Canola for Biofuel Production in the Context of Energy Security—A Systematic Literature Review," Energies, MDPI, vol. 18(10), pages 1-27, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andra Lovasz & Nicu Cornel Sabau & Ioana Borza & Radu Brejea, 2023. "Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System," Energies, MDPI, vol. 16(9), pages 1-27, April.
    2. Golubeva, M.A. & Maximov, A.L., 2025. "Transition metal compounds in the hydrodeoxygenation of biomass derivatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    3. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    4. Mia Gotovuša & Ivan Pucko & Marko Racar & Fabio Faraguna, 2022. "Biodiesel Produced from Propanol and Longer Chain Alcohols—Synthesis and Properties," Energies, MDPI, vol. 15(14), pages 1-21, July.
    5. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    6. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    7. Fang Yan & Kaili Xu & Deshun Li & Zhikai Cui, 2017. "A novel hazard assessment method for biomass gasification stations based on extended set pair analysis," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-21, September.
    8. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    9. Evangelos G. Giakoumis & Christos K. Sarakatsanis, 2019. "A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition," Energies, MDPI, vol. 12(3), pages 1-30, January.
    10. Bolonio, David & García-Martínez, María-Jesús & Ortega, Marcelo F. & Lapuerta, Magín & Rodríguez-Fernández, José & Canoira, Laureano, 2019. "Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel," Renewable Energy, Elsevier, vol. 132(C), pages 278-283.
    11. Vieira, Bruno & Nadaleti, Willian Cézar & Sarto, Ewerson, 2021. "The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: Energy matrix diversification," Renewable Energy, Elsevier, vol. 165(P1), pages 657-667.
    12. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    13. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    14. Anton L. Esipovich & Evgeny A. Kanakov & Tatyana A. Charykova & Ksenia V. Otopkova & Mikhail A. Smirnov & Yulia A. Mityukova & Artem S. Belousov, 2024. "A Comprehensive Study on Physicochemical Properties of Fatty Acid Esters Derived from Different Vegetable Oils and Alcohols and Their Potential Application," Energies, MDPI, vol. 17(24), pages 1-27, December.
    15. Gupta, Jharna & Agarwal, Madhu & Dalai, A.K., 2019. "Intensified transesterification of mixture of edible and nonedible oils in reverse flow helical coil reactor for biodiesel production," Renewable Energy, Elsevier, vol. 134(C), pages 509-525.
    16. Senusi, Wardah & Ahmad, Mardiana Idayu & Abdul Khalil, H.P.S. & Shakir, Mohammad Aliff & Binhweel, Fozy & Shalfoh, Ehsan & Alsaadi, Sami, 2024. "Comparative assessment for biodiesel production from low-cost feedstocks of third oil generation," Renewable Energy, Elsevier, vol. 236(C).
    17. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    18. Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
    19. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3802-:d:1703900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.