IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3802-d1703900.html
   My bibliography  Save this article

Modification of Canola Oil Properties Using Ethyl Oleate and n -Hexane

Author

Listed:
  • Katarzyna Szymczyk

    (Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland)

  • Anna Zdziennicka

    (Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland)

  • Bronisław Jańczuk

    (Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland)

Abstract

Canola oil (rapeseed oil, RO), despite being a potential source of biofuel, needs some modifications of its properties to be effectively used as a fuel. The reason RO needs to be altered lies above all in its viscosity, fatty acid composition, and other chemical properties, which affect its efficiency as a fuel. These properties of RO can be changed by mixing it with various bioadditives, among other methods. For this reason, studies of the physicochemical properties of mixtures including RO, n -hexane (Hex), and ethyl oleate (EO) were carried out. These mixtures were prepared at a constant EO concentration and a ratio of n -hexane in the mixture with RO in the range from 0 to 1. For these mixtures, the surface tension, density and viscosity were measured. The obtained results were considered to determine the chemical properties of particular components of the mixtures. From these considerations, it results that based on the properties of these components, the surface tension and density of the studied mixtures can be described, and their viscosity can be predicted. These facts and results of the measurements suggest that based on the properties of the mixture components, we can determine the composition of a mixture whose surface tension, density, and viscosity are close to those of diesel fuel. The results obtained from the measurements also suggest that the addition of 10% n -hexane to RO causes a considerable reduction in the surface tension, viscosity, and density of RO. The addition of 10% of EO to this mixture results in a further reduction in RO + Hex viscosity and increases its density and surface tension slightly. As such, a mixture of RO with Hex and EO may be appropriate as a biofuel.

Suggested Citation

  • Katarzyna Szymczyk & Anna Zdziennicka & Bronisław Jańczuk, 2025. "Modification of Canola Oil Properties Using Ethyl Oleate and n -Hexane," Energies, MDPI, vol. 18(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3802-:d:1703900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3802/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3802-:d:1703900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.