IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124008797.html
   My bibliography  Save this article

Transition metal compounds in the hydrodeoxygenation of biomass derivatives

Author

Listed:
  • Golubeva, M.A.
  • Maximov, A.L.

Abstract

Conventional hydroprocessing catalysts such as transition metal oxides and sulfides were compared to less widespread catalysts such as transition metal phosphides, carbides, and nitrides in the hydrodeoxygenation of biomass derivatives. Interest in using the three latter types of compounds as heterogeneous catalysts has increased significantly in the last 10–20 years. All these transition metal catalysts are united by the presence of active sites responsible for hydrogenation and hydrodeoxygenation. The activity in hydrodeoxygenation is determined by the presence of Lewis and Brønsted acid sites and anion vacancies in the catalysts, while the activity in hydrogenation is determined by the presence and availability of metal sites and the presence of anion vacancies. The catalysts investigated were found to have a great potential for the selective production of aromatic hydrocarbons, used as solvents and gasoline components; diesel-range hydrocarbons, and other valuable products. However, water formation during the hydroprocessing and coke deposition can lead to a reduction in catalyst activity.

Suggested Citation

  • Golubeva, M.A. & Maximov, A.L., 2025. "Transition metal compounds in the hydrodeoxygenation of biomass derivatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124008797
    DOI: 10.1016/j.rser.2024.115153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    2. Signe S. Grønborg & Norberto Salazar & Albert Bruix & Jonathan Rodríguez-Fernández & Sean D. Thomsen & Bjørk Hammer & Jeppe V. Lauritsen, 2018. "Visualizing hydrogen-induced reshaping and edge activation in MoS2 and Co-promoted MoS2 catalyst clusters," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    4. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    5. Elba Ochoa & Daniel Torres & José Luis Pinilla & Isabel Suelves, 2020. "Nanostructured Carbon Material Effect on the Synthesis of Carbon-Supported Molybdenum Carbide Catalysts for Guaiacol Hydrodeoxygenation," Energies, MDPI, vol. 13(5), pages 1-19, March.
    6. Norberto Salazar & Srinivas Rangarajan & Jonathan Rodríguez-Fernández & Manos Mavrikakis & Jeppe V. Lauritsen, 2020. "Site-dependent reactivity of MoS2 nanoparticles in hydrodesulfurization of thiophene," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Cao, Xincheng & Long, Feng & Zhai, Qiaolong & Liu, Peng & Xu, Junming & Jiang, Jianchun, 2020. "Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported Ni-MoOx catalyst and elucidation of the active phase," Renewable Energy, Elsevier, vol. 162(C), pages 2113-2125.
    8. Burimsitthigul, Thikhamporn & Yoosuk, Boonyawan & Ngamcharussrivichai, Chawalit & Prasassarakich, Pattarapan, 2021. "Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts," Renewable Energy, Elsevier, vol. 163(C), pages 1648-1659.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adzahar, Nur Athirah & AbdulKareem-Alsultan, G. & Mijan, N. Asikin & Mastuli, M.S. & Lee, H.V. & Taufiq-Yap, Y.H., 2025. "Effect of catalyst synthesis of bimetallic nickel-cobalt supported iron-based catalysts on converting palm kernel oil into bio-jet fuel via deoxygenation reaction," Energy, Elsevier, vol. 314(C).
    2. Wang, Fei & Pace, Robert & Ji, Yaying & Jiang, Jianchun & Jiang, Xiaoxiang & Krystianiak, Anna & Heintz, Olivier & Caboche, Gilles & Santillan-Jimenez, Eduardo & Crocker, Mark, 2022. "Effect of Pd promotion and catalyst support on the Ni-catalyzed deoxygenation of tristearin to fuel-like hydrocarbons," Renewable Energy, Elsevier, vol. 195(C), pages 1468-1479.
    3. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    4. Rodiansono, & Syahruji, & Dewi, Heny Puspita & Azzahra, Atina Sabila & Sembiring, Kiky Corneliasari & Adilina, Indri Badria & Afandi, Ahmad, 2024. "Pivotal MoOx-decorated Ru/C with a monomeric structure boosts the room temperature and low-pressure hydrogenation of levulinic acid to γ−valerolactone," Renewable Energy, Elsevier, vol. 229(C).
    5. Cai, Bo & Zhang, Yongjian & Feng, Junfeng & Huang, Cong & Ma, Tianyi & Pan, Hui, 2021. "Highly efficient g-C3N4 supported ruthenium catalysts for the catalytic transfer hydrogenation of levulinic acid to liquid fuel γ-valerolactone," Renewable Energy, Elsevier, vol. 177(C), pages 652-662.
    6. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    7. Fang Yan & Kaili Xu & Deshun Li & Zhikai Cui, 2017. "A novel hazard assessment method for biomass gasification stations based on extended set pair analysis," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-21, September.
    8. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    9. Evangelos G. Giakoumis & Christos K. Sarakatsanis, 2019. "A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition," Energies, MDPI, vol. 12(3), pages 1-30, January.
    10. Bolonio, David & García-Martínez, María-Jesús & Ortega, Marcelo F. & Lapuerta, Magín & Rodríguez-Fernández, José & Canoira, Laureano, 2019. "Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel," Renewable Energy, Elsevier, vol. 132(C), pages 278-283.
    11. Vieira, Bruno & Nadaleti, Willian Cézar & Sarto, Ewerson, 2021. "The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: Energy matrix diversification," Renewable Energy, Elsevier, vol. 165(P1), pages 657-667.
    12. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    13. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    14. Long, Feng & Zhai, Qiaolong & Liu, Peng & Cao, Xincheng & Jiang, Xia & Wang, Fei & Wei, Linshan & Liu, Chao & Jiang, Jianchun & Xu, Junming, 2020. "Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel," Renewable Energy, Elsevier, vol. 157(C), pages 1072-1080.
    15. Gupta, Jharna & Agarwal, Madhu & Dalai, A.K., 2019. "Intensified transesterification of mixture of edible and nonedible oils in reverse flow helical coil reactor for biodiesel production," Renewable Energy, Elsevier, vol. 134(C), pages 509-525.
    16. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Shahbaz, Muhammad & Aqsha, Aqsha, 2020. "Process optimization of green diesel selectivity and understanding of reaction intermediates," Renewable Energy, Elsevier, vol. 149(C), pages 1092-1106.
    17. Hafriz, R.S.R.M. & Shafizah, I. Nor & Arifin, N.A. & Salmiaton, A. & Yunus, R. & Yap, Y.H. Taufiq & Shamsuddin, A.H., 2021. "Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil," Renewable Energy, Elsevier, vol. 178(C), pages 128-143.
    18. Gunasekaran, Vijayakumar & Gurusamy, Harichandran & Ravi, Ganesan & Rathinam, Yuvakkumar, 2024. "Sustainable synthesis of bio-diesel and jet-fuel range hydrocarbons from poisonous Abrus Precatorius seed oil over MoO3-HPW/Ga-KIT-6," Renewable Energy, Elsevier, vol. 224(C).
    19. Zhu, Yingbo & Ma, Yulong & Sun, Yonggang & Wang, Liqiong & Ding, Jie & Zhong, Yudan & Zhang, Juan & Wang, Lei & Li, Yuanyuan, 2023. "In-situ construction of N-doped hollow carbon polyhedral cage anchored Co-Ni dual binding sites as nanoreactor for efficient real lignin oil hydrodeoxygenation," Renewable Energy, Elsevier, vol. 217(C).
    20. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124008797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.