IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3738-d1701792.html
   My bibliography  Save this article

Methodology of Determining the Intensity of Heat Exchange in a Polytunnel: A Case Study of Synergy Between the Polytunnel and a Stone Heat Accumulator

Author

Listed:
  • Sławomir Kurpaska

    (Department of Bioprocess Engineering, Energy and Automation, Faculty of Production Engineering and Power Technologies, University of Agriculture in Krakow, ul. Balicka 116, 30-149 Krakow, Poland)

  • Paweł Kiełbasa

    (Department of Bioprocess Engineering, Energy and Automation, Faculty of Production Engineering and Power Technologies, University of Agriculture in Krakow, ul. Balicka 116, 30-149 Krakow, Poland)

  • Jarosław Knaga

    (Department of Bioprocess Engineering, Energy and Automation, Faculty of Production Engineering and Power Technologies, University of Agriculture in Krakow, ul. Balicka 116, 30-149 Krakow, Poland)

  • Stanisław Lis

    (Department of Bioprocess Engineering, Energy and Automation, Faculty of Production Engineering and Power Technologies, University of Agriculture in Krakow, ul. Balicka 116, 30-149 Krakow, Poland)

  • Maciej Gliniak

    (Department of Bioprocess Engineering, Energy and Automation, Faculty of Production Engineering and Power Technologies, University of Agriculture in Krakow, ul. Balicka 116, 30-149 Krakow, Poland)

Abstract

This paper presents the results of laboratory tests on the intensity of mass and heat exchange in a polytunnel, with a focus on the synergy between the polytunnel and a stone accumulator. The subject of study was a standard polytunnel made of double polythene sheathing. In the process of selecting the appropriate working conditions for such a polytunnel, the characteristic operating parameters were modeled and verified. They were related to the process of mass and energy exchange, which takes place in regular controlled-environment agriculture (CEA). Then, experimental tests of a heat accumulator on a fixed stone bed were carried out. The experiments were carried out for various accumulator surfaces ranging from 18.7 m 2 to 74.8 m 2 , which was measured perpendicularly to the heat medium. To standardize the results obtained, the analysis included the unit area of the accumulator and the unit time of the experiment. In this way, 835 heat and mass exchange events were analyzed, including 437 accumulator charging processes and 398 discharging processes from April to October, which is a standard period of polytunnel use in the Polish climate. During the tests, internal and external parameters of the process were recorded, such as temperature, relative humidity, solar radiation, wind speed and air flow speed in the accumulator system. Based on the parameters, a set of empirical relationships was developed using mathematical modeling. This provided the foundation for calculating heat gains as a result of its storage in a stone accumulator and its discharging process. The research results, including the developed dependencies, not only fill the scientific gap in the field of heat storage, but can also be used in engineering design of polytunnels supported by a heat storage system on a stone bed. In addition, the proposed methodology can be used in the study of other heat accumulators, not only in plant production facilities.

Suggested Citation

  • Sławomir Kurpaska & Paweł Kiełbasa & Jarosław Knaga & Stanisław Lis & Maciej Gliniak, 2025. "Methodology of Determining the Intensity of Heat Exchange in a Polytunnel: A Case Study of Synergy Between the Polytunnel and a Stone Heat Accumulator," Energies, MDPI, vol. 18(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3738-:d:1701792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouhdjar, A. & Belhamel, M. & Belkhiri, F.E. & Boulbina, A., 1996. "Performance of sensible heat storage in a rockbed used in a tunnel greenhouse," Renewable Energy, Elsevier, vol. 9(1), pages 724-728.
    2. Kurpaska, S. & Latala, H., 2010. "Energy analysis of heat surplus storage systems in plastic tunnels," Renewable Energy, Elsevier, vol. 35(12), pages 2656-2665.
    3. Kürklü, Ahmet & Bilgin, Sefai & Özkan, Burhan, 2003. "A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse," Renewable Energy, Elsevier, vol. 28(5), pages 683-697.
    4. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    5. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    6. Vadiee, Amir & Martin, Viktoria, 2014. "Energy management strategies for commercial greenhouses," Applied Energy, Elsevier, vol. 114(C), pages 880-888.
    7. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    8. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    2. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    3. Muhammad Saqib & Rafal Andrzejczyk, 2023. "A review of phase change materials and heat enhancement methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
    4. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    5. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    6. Buonomo, Bernardo & Manca, Oronzio & Nardini, Sergio & Plomitallo, Renato Elpidio, 2022. "Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium," Renewable Energy, Elsevier, vol. 195(C), pages 1368-1380.
    7. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    8. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    9. Chunchao Wu & Yonghong Zhao & Wulin Li & Jianjun Fan & Haixiang Xu & Zhongqian Ling & Dingkun Yuan & Xianyang Zeng, 2025. "Concentrated Solar Thermal Power Technology and Its Thermal Applications," Energies, MDPI, vol. 18(8), pages 1-33, April.
    10. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    11. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    13. Wang, Mengyi & Chen, Li & Zhou, Yuhao & Tao, Wen-Quan, 2022. "Numerical simulation of the calcium hydroxide/calcium oxide system dehydration reaction in a shell-tube reactor," Applied Energy, Elsevier, vol. 312(C).
    14. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    15. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    16. Kürklü, Ahmet & Bilgin, Sefai & Özkan, Burhan, 2003. "A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse," Renewable Energy, Elsevier, vol. 28(5), pages 683-697.
    17. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    18. Varga, Szabolcs & Oliveira, Armando C. & Palmero-Marrero, Anna & Vrba, Jakub, 2017. "Preliminary experimental results with a solar driven ejector air conditioner in Portugal," Renewable Energy, Elsevier, vol. 109(C), pages 83-92.
    19. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    20. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3738-:d:1701792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.