IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp1368-1380.html
   My bibliography  Save this article

Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium

Author

Listed:
  • Buonomo, Bernardo
  • Manca, Oronzio
  • Nardini, Sergio
  • Plomitallo, Renato Elpidio

Abstract

The effects of metal foams on Latent Heat Thermal Energy Storage System, LHTESS, based on a phase change material, PCM, is numerically investigated. The geometry of the system is a vertical shell and tube LHTESS made of two concentric tubes. A constant temperature above the melting temperature of the PCM on the internal surface of the hollow cylinder is assumed to simulate the heat transfer from a hot fluid. The external surfaces are adiabatic. The PCM is completely embedded in the volume between the two coaxial cylinders. An aluminum metal foam is chosen, and it partially fills the volume starting from the internal cylinder. The enthalpy-porosity theory and the Darcy-Brinkman-extended model are employed to simulate, respectively, the phase change of the PCM and the metal foam which is modelled in local thermal equilibrium. Ansys-Fluent code is adopted to solve the governing equations. The results are rendered in terms of melting time, liquid fraction, temperature, and stored thermal energy as a function of time and for different metal foam thickness values. The results indicate that the melting time reduces with increase in the thickness of the metal foam. The partially filled thermal storage system exhibits varying characteristics at the initiation and at the sustenance periods of the heating process. A scale analysis is performed to estimate the melting time and the values are in tandem with the numerical model evaluation.

Suggested Citation

  • Buonomo, Bernardo & Manca, Oronzio & Nardini, Sergio & Plomitallo, Renato Elpidio, 2022. "Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium," Renewable Energy, Elsevier, vol. 195(C), pages 1368-1380.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1368-1380
    DOI: 10.1016/j.renene.2022.06.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    2. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    3. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    4. Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Caliano, Martina & Bianco, Nicola & Graditi, Giorgio & Mongibello, Luigi, 2019. "Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation," Applied Energy, Elsevier, vol. 256(C).
    6. Oró, Eduard & Gil, Antoni & de Gracia, Alvaro & Boer, Dieter & Cabeza, Luisa F., 2012. "Comparative life cycle assessment of thermal energy storage systems for solar power plants," Renewable Energy, Elsevier, vol. 44(C), pages 166-173.
    7. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Seunghoon & Lee, Hyoseong & Jun, Yong Joo & Lee, Hoseong, 2024. "Hybrid battery thermal management system coupled with paraffin/copper foam composite phase change material," Applied Energy, Elsevier, vol. 353(PA).
    2. Tavakoli, Ali & Farzaneh-Gord, Mahmood & Ebrahimi-Moghadam, Amir, 2023. "Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analyses," Renewable Energy, Elsevier, vol. 205(C), pages 222-237.
    3. Zhang, Shuai & Yan, Yuying, 2023. "Evaluation and optimisation of hybrid sensible-latent heat thermal energy storage unit with natural stones to enhance heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    4. Jana Shafi & Mehdi Ghalambaz & Mehdi Fteiti & Muneer Ismael & Mohammad Ghalambaz, 2022. "Computational Modeling of Latent Heat Thermal Energy Storage in a Shell-Tube Unit: Using Neural Networks and Anisotropic Metal Foam," Mathematics, MDPI, vol. 10(24), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    2. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    4. Hou, Jin & Xu, Peng & Lu, Xing & Pang, Zhihong & Chu, Yiyi & Huang, Gongsheng, 2018. "Implementation of expansion planning in existing district energy system: A case study in China," Applied Energy, Elsevier, vol. 211(C), pages 269-281.
    5. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    6. Bilardo, Matteo & Fraisse, Gilles & Pailha, Mickael & Fabrizio, Enrico, 2020. "Design and experimental analysis of an Integral Collector Storage (ICS) prototype for DHW production," Applied Energy, Elsevier, vol. 259(C).
    7. Turrini, Sebastiano & Bettonte, Marco & Eccher, Massimo & Grigiante, Maurizio & Miotello, Antonio & Brusa, Roberto S., 2018. "An innovative small-scale prototype plant integrating a solar dish concentrator with a molten salt storage system," Renewable Energy, Elsevier, vol. 123(C), pages 150-161.
    8. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Li, Qing & Bai, Fengwu & Yang, Bei & Wang, Zhifeng & El Hefni, Baligh & Liu, Sijie & Kubo, Syuichi & Kiriki, Hiroaki & Han, Mingxu, 2016. "Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant," Applied Energy, Elsevier, vol. 178(C), pages 281-293.
    10. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    12. De Schepper, Guillaume & Paulus, Claire & Bolly, Pierre-Yves & Hermans, Thomas & Lesparre, Nolwenn & Robert, Tanguy, 2019. "Assessment of short-term aquifer thermal energy storage for demand-side management perspectives: Experimental and numerical developments," Applied Energy, Elsevier, vol. 242(C), pages 534-546.
    13. Zhang, Shuai & Yan, Yuying, 2022. "Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 198(C), pages 1210-1223.
    14. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    15. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. El Fadar, Abdellah, 2016. "Novel process for performance enhancement of a solar continuous adsorption cooling system," Energy, Elsevier, vol. 114(C), pages 10-23.
    17. Pu, Liang & Zhang, Shengqi & Xu, Lingling & Ma, Zhenjun & Wang, Xinke, 2021. "Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam," Renewable Energy, Elsevier, vol. 174(C), pages 573-589.
    18. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    19. Tiskatine, R. & Eddemani, A. & Gourdo, L. & Abnay, B. & Ihlal, A. & Aharoune, A. & Bouirden, L., 2016. "Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage," Applied Energy, Elsevier, vol. 171(C), pages 243-255.
    20. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1368-1380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.