IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3364-d1688352.html
   My bibliography  Save this article

Net-Zero Backup Solutions for Green Ammonia Hubs Based on Hydrogen Power Generation

Author

Listed:
  • Markus Strömich-Jenewein

    (INNIO Group, 6200 Jenbach, Austria)

  • Abdessamad Saidi

    (INNIO Group, 6200 Jenbach, Austria)

  • Andrea Pivatello

    (INNIO Group, 6200 Jenbach, Austria)

  • Stefano Mazzoni

    (Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

Abstract

This paper explores cleaner and techno-economically viable solutions to provide electricity, heat, and cooling using green hydrogen (H 2 ) and green ammonia (NH 3 ) across the entire decarbonized value chain. We propose integrating a 100% hydrogen-fueled internal combustion engine (e.g., Jenbacher JMS 420) as a stationary backup solution and comparing its performance with other backup technologies. While electrochemical storage systems, or battery energy storage systems (BESSs), offer fast and reliable short-term energy buffering, they lack flexibility in relocation and typically involve higher costs for extended backup durations. Through five case studies, we highlight that renewable-based energy supply requires additional capacity to bridge longer periods of undersupply. Our results indicate that, for cost reasons, battery–electric solutions alone are not economically feasible for long-term backup. Instead, a more effective system combines both battery and hydrogen storage, where batteries address daily fluctuations and hydrogen engines handle seasonal surpluses. Despite lower overall efficiency, gas engines offer favorable investment and operating costs in backup applications with low annual operating hours. Furthermore, the inherent fuel flexibility of combustion engines eventually will allow green ammonia-based backup systems, particularly as advancements in small-scale thermal cracking become commercially available. Future studies will address CO 2 credit recognition, carbon taxes, and regulatory constraints in developing more effective dispatch and master-planning solutions.

Suggested Citation

  • Markus Strömich-Jenewein & Abdessamad Saidi & Andrea Pivatello & Stefano Mazzoni, 2025. "Net-Zero Backup Solutions for Green Ammonia Hubs Based on Hydrogen Power Generation," Energies, MDPI, vol. 18(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3364-:d:1688352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    2. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    3. Phan Anh Duong & Bo Rim Ryu & Mi Kyoung Song & Hong Van Nguyen & Dong Nam & Hokeun Kang, 2023. "Safety Assessment of the Ammonia Bunkering Process in the Maritime Sector: A Review," Energies, MDPI, vol. 16(10), pages 1-30, May.
    4. Farhan Haider Joyo & Andrea Falasco & Daniele Groppi & Adriana Scarlet Sferra & Davide Astiaso Garcia, 2025. "Hydrogen and Ammonia Production and Transportation from Offshore Wind Farms: A Techno-Economic Analysis," Energies, MDPI, vol. 18(9), pages 1-27, April.
    5. Maciej Chorowski & Michał Lepszy & Krystian Machaj & Ziemowit Malecha & Dominika Porwisiak & Paweł Porwisiak & Zbigniew Rogala & Michał Stanclik, 2023. "Challenges of Application of Green Ammonia as Fuel in Onshore Transportation," Energies, MDPI, vol. 16(13), pages 1-31, June.
    6. Viviana Negro & Michel Noussan & David Chiaramonti, 2023. "The Potential Role of Ammonia for Hydrogen Storage and Transport: A Critical Review of Challenges and Opportunities," Energies, MDPI, vol. 16(17), pages 1-19, August.
    7. Purna Chandra Rao & Minyoung Yoon, 2020. "Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress," Energies, MDPI, vol. 13(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    2. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    3. Seyedeh Azadeh Alavi-Borazjani & Shahzada Adeel & Valentina Chkoniya, 2025. "Hydrogen as a Sustainable Fuel: Transforming Maritime Logistics," Energies, MDPI, vol. 18(5), pages 1-36, March.
    4. Nguyen Van Duc Long & Le Cao Nhien & Moonyong Lee, 2023. "Advanced Technologies in Hydrogen Revolution," Energies, MDPI, vol. 16(5), pages 1-4, February.
    5. Georgios Giakoumakis & Dimitrios Sidiras, 2025. "Production and Storage of Hydrogen from Biomass and Other Sources: Technologies and Policies," Energies, MDPI, vol. 18(3), pages 1-41, January.
    6. Carlos A. Castilla-Martinez & Romain Moury & Salem Ould-Amara & Umit B. Demirci, 2021. "Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances," Energies, MDPI, vol. 14(21), pages 1-50, October.
    7. Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.
    8. Machaj, Krystian, 2024. "Experimental and numerical investigation of direct ammonia solid oxide fuel cells with the implementation of ammonia decomposition source terms in a 3D finite volume-based model," Energy, Elsevier, vol. 312(C).
    9. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    10. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    11. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    12. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    13. Tran Thi Nguyet Minh & Hanh-Thi Hong Hoang & Hyung Sik Nam & Anas S. Alamoush & Phan Anh Duong, 2025. "Revisiting Port Decarbonization for Advancing a Sustainable Maritime Industry: Insights from Bibliometric Review," Sustainability, MDPI, vol. 17(10), pages 1-36, May.
    14. Jamshid Yakhshilikov & Marco Cavana & Pierluigi Leone, 2024. "A Review of the Energy System and Transport Sector in Uzbekistan in View of Future Hydrogen Uptake," Energies, MDPI, vol. 17(16), pages 1-30, August.
    15. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Namsu Kim & Minjung Lee & Juwon Park & Jeongje Park & Taesong Lee, 2022. "A Comparative Study of NO x Emission Characteristics in a Fuel Staging and Air Staging Combustor Fueled with Partially Cracked Ammonia," Energies, MDPI, vol. 15(24), pages 1-15, December.
    17. Fengyuan Yan & Xiaolong Han & Qianwei Cheng & Yamin Yan & Qi Liao & Yongtu Liang, 2022. "Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System," Energies, MDPI, vol. 15(6), pages 1-28, March.
    18. Laith Mustafa & Rafał Ślefarski & Radosław Jankowski & Mohammad Alnajideen & Sven Eckart, 2025. "Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using CH 4 / NH 3 and CH 4 / H 2," Energies, MDPI, vol. 18(12), pages 1-29, June.
    19. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Farea Asif & Muhammad Haris Hamayun & Murid Hussain & Arif Hussain & Ibrahim M. Maafa & Young-Kwon Park, 2021. "Performance Analysis of the Perhydro-Dibenzyl-Toluene Dehydrogenation System—A Simulation Study," Sustainability, MDPI, vol. 13(11), pages 1-14, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3364-:d:1688352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.