IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3223-d1683033.html
   My bibliography  Save this article

Comparative Analysis of Transcritical CO 2 Heat Pump Systems With and Without Ejector: Performance, Exergy, and Economic Perspective

Author

Listed:
  • Xiang Qin

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
    Environmental System Research Laboratory, Faculty of Engineering, Hokkaido University, N13-W8, Sapporo 060-8628, Japan)

  • Shihao Lei

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Heyu Liu

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Yinghao Zeng

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Yajun Liu

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Caiyan Pang

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Jiaheng Chen

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

Abstract

To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO 2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key innovation of this work lies in the integration of an ejector into the dual-source system, aiming to improve system performance and energy efficiency. This study systematically compares the conventional circulation mode and the proposed ejector-assisted circulation mode in terms of system performance, exergy efficiency, and the economic payback period. Experimental results reveal that the ejector-assisted mode not only achieves a higher water outlet temperature and reduces compressor power consumption but also improves the system’s exergy efficiency by 6.6% under the condition of the maximum outlet water temperature. Although the addition of the ejector increases initial manufacturing and maintenance costs, the payback periods of the two modes remain nearly the same. These findings confirm the feasibility and advantage of incorporating an ejector into a transcritical CO 2 compression/ejection heat pump system with integrated air and water sources, offering a promising solution for efficient and environmentally friendly high-temperature water heating applications.

Suggested Citation

  • Xiang Qin & Shihao Lei & Heyu Liu & Yinghao Zeng & Yajun Liu & Caiyan Pang & Jiaheng Chen, 2025. "Comparative Analysis of Transcritical CO 2 Heat Pump Systems With and Without Ejector: Performance, Exergy, and Economic Perspective," Energies, MDPI, vol. 18(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3223-:d:1683033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qin, Xiang & Wang, Dingbiao & Jin, Zunlong & Wang, Junlei & Zhang, Guojie & Li, Hang, 2021. "A comprehensive investigation on the effect of internal heat exchanger based on a novel evaluation method in the transcritical CO2 heat pump system," Renewable Energy, Elsevier, vol. 178(C), pages 574-586.
    2. Chen, Xiangjie & Worall, Mark & Omer, Siddig & Su, Yuehong & Riffat, Saffa, 2013. "Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle," Applied Energy, Elsevier, vol. 102(C), pages 931-942.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    2. Chong, Daotong & Hu, Mengqi & Chen, Weixiong & Wang, Jinshi & Liu, Jiping & Yan, Junjie, 2014. "Experimental and numerical analysis of supersonic air ejector," Applied Energy, Elsevier, vol. 130(C), pages 679-684.
    3. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    4. Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
    5. Dongxue Zhu & Chaohe Fang & Shejiao Wang & Yafei Xue & Liaoliang Jiang & Yulong Song & Feng Cao, 2025. "Comprehensive Performance and Economic Analyses of Transcritical CO 2 Heat Pump Water Heater Suitable for Petroleum Processes and Heating Applications," Energies, MDPI, vol. 18(12), pages 1-16, June.
    6. Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michal & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "System model derivation of the CO2 two-phase ejector based on the CFD-based reduced-order model," Energy, Elsevier, vol. 144(C), pages 941-956.
    7. Xiong, Chengyan & Luo, Huilong & Ren, Ke & Wang, Xinyu & Liu, Jiyuan & Chen, Zidan & Sun, Biyang & Wu, Changlang & Yang, Xiaochuan & Du, Peijian, 2025. "An efficient CO2 air-to-water heat pump central space heating system in cold regions: A case study," Renewable Energy, Elsevier, vol. 242(C).
    8. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    9. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    10. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    11. Aleksei Khimenko & Dmitry Tikhomirov & Stanislav Trunov & Aleksey Kuzmichev & Vadim Bolshev & Olga Shepovalova, 2022. "Electric Heating System with Thermal Storage Units and Ceiling Fans for Cattle-Breeding Farms," Agriculture, MDPI, vol. 12(11), pages 1-13, October.
    12. Qin, Xiang & Shen, Aoqi & Duan, Hongxin & Wang, Guanghui & Chen, Jiaheng & Tang, Songzhen & Wang, Dingbiao, 2024. "Experimental verification of the novel transcritical CO2 heat pump system and model evaluation method," Renewable Energy, Elsevier, vol. 222(C).
    13. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    14. Yutong Wu & Bin Xin & Hongyu Zhu & Zifei Ye, 2022. "Energy-Saving Operation Strategy for Hotels Considering the Impact of COVID-19 in the Context of Carbon Neutrality," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    15. Jia, Fan & Yin, Xiang & He, Shentong & Cao, Zhijian & Fang, Jianmin & Cao, Feng & Wang, Xiaolin, 2025. "Steady-state and dynamic experimental study of an enhanced automotive thermal management system based on energy cascade utilization," Energy, Elsevier, vol. 316(C).
    16. Ivan Ignatkin & Sergey Kazantsev & Nikolay Shevkun & Dmitry Skorokhodov & Nikita Serov & Aleksei Alipichev & Vladimir Panchenko, 2023. "Developing and Testing the Air Cooling System of a Combined Climate Control Unit Used in Pig Farming," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    17. Hou, Yaxiang & Wu, Weidong & Li, Zhenbo & Yu, Xinyi & Zeng, Tao, 2023. "Effect of drying air supply temperature and internal heat exchanger on performance of a novel closed-loop transcritical CO2 air source heat pump drying system," Renewable Energy, Elsevier, vol. 219(P2).
    18. Matsuura, Riku & Watanabe, Kosuke & Yamauchi, Yuji & Sato, Haruka & Chen, Li-Jen & Ohmura, Ryo, 2021. "Thermodynamic analysis of hydrate-based refrigeration cycle," Energy, Elsevier, vol. 220(C).
    19. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    20. Wang, Haidan & Song, Yulong & Qiao, Yiyou & Li, Shengbo & Cao, Feng, 2022. "Rational assessment and selection of air source heat pump system operating with CO2 and R407C for electric bus," Renewable Energy, Elsevier, vol. 182(C), pages 86-101.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3223-:d:1683033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.