IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp1283-1299.html
   My bibliography  Save this article

Performance evaluation of a renewable driven standalone combined power and water supply system with cascade electricity and heat storage

Author

Listed:
  • Zhao, Pan
  • Xu, Wenpan
  • Liu, Aijie
  • Wu, Wenze
  • Wang, Jiangfeng
  • Yan, Zhequan

Abstract

The reliable supply of electricity and freshwater is linked to the living quality of local residents in remote islands. A renewable driven standalone combined power and water supply system with cascade electricity and heat storage is proposed in this paper. The hybrid wind-solar power system acts as the energy source and the humidification dehumidification (HDH) desalination is employed for freshwater production. The underwater compressed air energy storage (UW-CAES) is introduced to smooth the renewable fluctuations, whereas the heat storage system for heat addition purpose of HDH desalination is utilized to reduce dumped power during UW-CAES charging. The simulated results show that the suggested system can satisfy electricity and freshwater demand well. The lower loss of power supply probability (LPSP) or loss of water supply probability (LWSP) requires larger renewable installed capacity. At same threshold situation, the renewable configuration of LWSP is larger than that of LPSP. The performance comparison among different system structures implies that this system has lower renewable configuration and total dumped energy. Moreover, the coefficient of performance of heat pump (COP), the heat storage system capacity, the basic freshwater demand, the flexible energy bag volume and the humidifier seawater inlet temperature have obvious effect on system performance.

Suggested Citation

  • Zhao, Pan & Xu, Wenpan & Liu, Aijie & Wu, Wenze & Wang, Jiangfeng & Yan, Zhequan, 2022. "Performance evaluation of a renewable driven standalone combined power and water supply system with cascade electricity and heat storage," Renewable Energy, Elsevier, vol. 199(C), pages 1283-1299.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1283-1299
    DOI: 10.1016/j.renene.2022.09.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    2. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    3. Qin, Xiang & Wang, Dingbiao & Jin, Zunlong & Wang, Junlei & Zhang, Guojie & Li, Hang, 2021. "A comprehensive investigation on the effect of internal heat exchanger based on a novel evaluation method in the transcritical CO2 heat pump system," Renewable Energy, Elsevier, vol. 178(C), pages 574-586.
    4. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Wang, Jiangfeng & Dai, Yiping, 2022. "Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes," Renewable Energy, Elsevier, vol. 181(C), pages 71-90.
    5. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Das, Pronob & Das, Barun K. & Rahman, Mushfiqur & Hassan, Rakibul, 2022. "Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms," Energy, Elsevier, vol. 238(PB).
    8. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    9. Michael Castro & Myron Alcanzare & Eugene Esparcia & Joey Ocon, 2020. "A Comparative Techno-Economic Analysis of Different Desalination Technologies in Off-Grid Islands," Energies, MDPI, vol. 13(9), pages 1-25, May.
    10. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    11. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Ghaithan, Ahmed M. & Al-Hanbali, Ahmad & Mohammed, Awsan & Attia, Ahmed M. & Saleh, Haitham & Alsawafy, Omar, 2021. "Optimization of a solar-wind- grid powered desalination system in Saudi Arabia," Renewable Energy, Elsevier, vol. 178(C), pages 295-306.
    13. Altun, Ayse Fidan & Kilic, Muhsin, 2020. "Design and performance evaluation based on economics and environmental impact of a PV-wind-diesel and battery standalone power system for various climates in Turkey," Renewable Energy, Elsevier, vol. 157(C), pages 424-443.
    14. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuznetsov, G.V. & Syrodoy, S.V. & Borisov, B.V. & Kostoreva, Zh.A. & Gutareva, N. Yu & Kostoreva, A.A., 2023. "Influence of homeomorphism of the surface of a wood particle on the characteristics of its ignition," Renewable Energy, Elsevier, vol. 203(C), pages 828-840.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    2. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    3. Batista, Natasha E. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2023. "Optimizing methodologies of hybrid renewable energy systems powered reverse osmosis plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Wang, Jiangfeng & Dai, Yiping, 2022. "Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes," Renewable Energy, Elsevier, vol. 181(C), pages 71-90.
    5. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    6. Mohammed, Ramy H. & Rezk, Ahmed & Askalany, Ahmed & Ali, Ehab S. & Zohir, A.E. & Sultan, Muhammad & Ghazy, Mohamed & Abdelkareem, Mohammad Ali & Olabi, A.G., 2021. "Metal-organic frameworks in cooling and water desalination: Synthesis and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    8. Castro, Michael T. & Pascasio, Jethro Daniel A. & Delina, Laurence L. & Balite, Paul Heherson M. & Ocon, Joey D., 2022. "Techno-economic and financial analyses of hybrid renewable energy system microgrids in 634 Philippine off-grid islands: Policy implications on public subsidies and private investments," Energy, Elsevier, vol. 257(C).
    9. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    10. Marina Moreira & Ivan Felipe Silva Santos & Lilian Ferreira Freitas & Flávio Ferreira Freitas & Regina Mambeli Barros & Geraldo Lúcio Tiago Filho, 2022. "Energy and economic analysis for a desalination plant powered by municipal solid waste incineration and natural gas in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1799-1826, February.
    11. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    12. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    13. Sadegh Modarresi, M. & Abada, Bilal & Sivaranjani, S. & Xie, Le & Chellam, Shankararaman, 2020. "Planning of survivable nano-grids through jointly optimized water and electricity: The case of Colonias at the Texas-Mexico border," Applied Energy, Elsevier, vol. 278(C).
    14. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    15. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    16. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    17. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    18. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    19. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    20. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1283-1299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.