IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2979-d1672355.html
   My bibliography  Save this article

Pyrolysis Process, Reactors, Products, and Applications: A Review

Author

Listed:
  • Prakhar Talwar

    (Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada)

  • Mariana Alzate Agudelo

    (Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
    Faculty of Engineering, Universidad de Antioquia, Medellín 050010, Antioquia, Colombia)

  • Sonil Nanda

    (Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada)

Abstract

With the rapid growth of the global population, increasing per capita energy demands, and waste generation, the need for innovative strategies to mitigate greenhouse gas emissions and effective waste management has become paramount. Pyrolysis, a thermochemical conversion process, facilitates the transformation of diverse biomass feedstocks, including agricultural biomass, forestry waste, and other carbonaceous wastes, into valuable biofuels such as bio-oil, biochar, and producer gas. The article reviews the benefits of pyrolysis as an effective and scalable technique for biofuel production from waste biomass. The review describes the different types of pyrolysis processes, such as slow, intermediate, fast, and catalytic, focusing on the effects of process parameters like temperature, heating rate, and residence time on biofuel yields and properties. The review also highlights the configurations and operating principles of different reactors used for pyrolysis, such as fixed bed, fluidized bed, entrained flow, plasma system, and microwaves. The review examines the factors affecting reactor performance, including energy consumption and feedstock attributes while highlighting the necessity of optimizing these systems to improve sustainability and economic feasibility in pyrolysis processes. The diverse value-added applications of biochar, bio-oil, and producer gas obtained from biomass pyrolysis are also discussed.

Suggested Citation

  • Prakhar Talwar & Mariana Alzate Agudelo & Sonil Nanda, 2025. "Pyrolysis Process, Reactors, Products, and Applications: A Review," Energies, MDPI, vol. 18(11), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2979-:d:1672355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    2. de Oliveira, Diego C. & Lora, Electo E.S. & Venturini, Osvaldo J. & Maya, Diego M.Y. & Garcia-Pérez, Manuel, 2023. "Gas cleaning systems for integrating biomass gasification with Fischer-Tropsch synthesis - A review of impurity removal processes and their sequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    3. Paul Palmay & Cesar Puente & Carla Haro & Joan Carles Bruno & Alberto Coronas, 2023. "Bio Oil as Cutter Stock in Fuel Oil Blends for Industrial Applications," Energies, MDPI, vol. 16(3), pages 1-11, February.
    4. Lin, Bo-Jhih & Chen, Wei-Hsin & Budzianowski, Wojciech M. & Hsieh, Cheng-Ting & Lin, Pei-Hsun, 2016. "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers," Applied Energy, Elsevier, vol. 178(C), pages 746-757.
    5. Shivangi Jha & Sonil Nanda & Bishnu Acharya & Ajay K. Dalai, 2022. "A Review of Thermochemical Conversion of Waste Biomass to Biofuels," Energies, MDPI, vol. 15(17), pages 1-23, August.
    6. Dina Aboelela & Habibatallah Saleh & Attia M. Attia & Yasser Elhenawy & Thokozani Majozi & Mohamed Bassyouni, 2023. "Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    7. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    8. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    9. Wang, Yuzhuo & Wu, Jun Jie, 2023. "Thermochemical conversion of biomass: Potential future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Greco, Gianluca & Di Stasi, Christian & Rego, Filipe & González, Belén & Manyà, Joan J., 2020. "Effects of slow-pyrolysis conditions on the products yields and properties and on exergy efficiency: A comprehensive assessment for wheat straw," Applied Energy, Elsevier, vol. 279(C).
    11. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    12. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    13. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    14. M. M. Hasan & M. G. Rasul & M. I. Jahirul & M. M. K. Khan, 2024. "Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil," Energies, MDPI, vol. 17(12), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicoleta Ungureanu & Nicolae-Valentin Vlăduț & Sorin-Ștefan Biriș & Neluș-Evelin Gheorghiță & Mariana Ionescu, 2025. "Biomass Pyrolysis Pathways for Renewable Energy and Sustainable Resource Recovery: A Critical Review of Processes, Parameters, and Product Valorization," Sustainability, MDPI, vol. 17(17), pages 1-71, August.
    2. Sahil Sahil & Sonil Nanda, 2025. "Process Intensification of Anaerobic Digestion of Biowastes for Improved Biomethane Production: A Review," Sustainability, MDPI, vol. 17(14), pages 1-35, July.
    3. Nicoleta Ungureanu & Nicolae-Valentin Vlăduț & Sorin-Ștefan Biriș & Mariana Ionescu & Neluș-Evelin Gheorghiță, 2025. "Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy," Sustainability, MDPI, vol. 17(15), pages 1-49, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicoleta Ungureanu & Nicolae-Valentin Vlăduț & Sorin-Ștefan Biriș & Neluș-Evelin Gheorghiță & Mariana Ionescu, 2025. "Biomass Pyrolysis Pathways for Renewable Energy and Sustainable Resource Recovery: A Critical Review of Processes, Parameters, and Product Valorization," Sustainability, MDPI, vol. 17(17), pages 1-71, August.
    2. Bassyouni, Mohamed & Nasser, Reem & El-Bagoury, Moataz & Shaker, Islam & Attia, Attia M. & Elhenawy, Yasser & Aboelela, Dina, 2025. "Integrating medical plastic waste pyrolysis and circular economy for environmental sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    3. Amir, Nizar & Hussin, Farihahusnah & Aroua, Mohamed Kheireddine & Gozan, Misri, 2025. "Exploring seaweed as a sustainable solution for carbon dioxide adsorption: Trends, opportunities, and future research prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    4. Chaudhary, Anu & Rathour, Ranju Kumari & Solanki, Preeti & Mehta Kakkar, Preeti & Pathania, Shruti & Walia, Abhishek & Baadhe, Rama Raju & Bhatia, Ravi Kant, 2025. "Recent technological advancements in biomass conversion to biofuels and bioenergy for circular economy roadmap," Renewable Energy, Elsevier, vol. 244(C).
    5. Teka Tesfaye Mengesha & Venkata Ramayya Ancha & Abebe Nigussie & Million Merid Afessa & Ramchandra Bhandari, 2025. "Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis," Sustainability, MDPI, vol. 17(11), pages 1-34, May.
    6. Marcin Landrat & Mamo Abawalo & Krzysztof Pikoń & Paulos Asefa Fufa & Semira Seyid, 2024. "Assessing the Potential of Teff Husk for Biochar Production through Slow Pyrolysis: Effect of Pyrolysis Temperature on Biochar Yield," Energies, MDPI, vol. 17(9), pages 1-17, April.
    7. Ige, Ayodeji Raphael & Łaska, Grażyna, 2025. "Production of antioxidant additives and biochar pellets from the Co-pyrolysis of agricultural biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    8. Tong Deng & Vivek Garg & Michael S. A. Bradley, 2025. "Review of Material-Handling Challenges in Energy Production from Biomass and Other Solid Waste Materials," Energies, MDPI, vol. 18(15), pages 1-30, August.
    9. Renzo Seminario-Córdova & Raúl Rojas-Ortega, 2023. "Renewable Energy Sources and Energy Production: A Bibliometric Analysis of the Last Five Years," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    10. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    11. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    12. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    13. Guido Busca & Elena Spennati & Matteo Borella & Alessandro A. Casazza & Gabriella Garbarino, 2025. "On the Exploitation of Lignin Slow Pyrolysis Products," Energies, MDPI, vol. 18(4), pages 1-17, February.
    14. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    15. Šuhaj, Patrik & Husár, Jakub & Haydary, Juma & Annus, Július, 2022. "Experimental verification of a pilot pyrolysis/split product gasification (PSPG) unit," Energy, Elsevier, vol. 244(PA).
    16. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    17. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. De Giorgi, Maria Grazia & Fontanarosa, Donato & Ficarella, Antonio & Pescini, Elisa, 2020. "Effects on performance, combustion and pollutants of water emulsified fuel in an aeroengine combustor," Applied Energy, Elsevier, vol. 260(C).
    19. Grzegorz Maj & Kamil Buczyński & Kamila E. Klimek & Magdalena Kapłan, 2024. "Evaluation of Growth and Energy Parameters of One-Year-Old Raspberry Shoots, Depending on the Variety," Energies, MDPI, vol. 17(13), pages 1-12, June.
    20. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2979-:d:1672355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.