IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1485-d1055734.html
   My bibliography  Save this article

Bio Oil as Cutter Stock in Fuel Oil Blends for Industrial Applications

Author

Listed:
  • Paul Palmay

    (Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador
    Department of Mechanical Engineering, Universitat Rovira i Virgili, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain)

  • Cesar Puente

    (Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador)

  • Carla Haro

    (Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador)

  • Joan Carles Bruno

    (Department of Mechanical Engineering, Universitat Rovira i Virgili, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain)

  • Alberto Coronas

    (Department of Mechanical Engineering, Universitat Rovira i Virgili, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain)

Abstract

In many countries, Heavy Fuel Oil (HFO) is still a common fuel in industrial applications due to its low price and high energy density. However, the complex and incomplete combustion of HFO results in high levels of emissions and low efficiency, which causes the search for additives to improve its properties without affecting its heating value. The present paper aims to use as an additive the liquid fraction from pyrolysis of the polystyrene for fuel oil, replacing conventional additives such as cutter stock, improving its fluidity without using heat to pump it. As for pyrolysis for obtaining pyrolytic oil, the effect of temperature on the chemical composition of the liquid fraction from the thermal pyrolysis of compact polystyrene was studied. PS pyrolysis was carried out in a temperature range between 350 to 450 °C at a heating rate of 15 °C min −1 in a batch type reactor, with a condensation system, in order to analyze the best fraction liquid yield. At 400 °C we obtained a liquid fraction of 81%. This product presented a kinematic viscosity of 1.026 mm 2 s −1 , a relative density of 0.935, a flash point of 24 °C, and a gross heating value of 48.5 MJ kg −1 . Chromatographic analysis indicates that 75% by mass of the components corresponds to C6 to C20 hydrocarbons, showing the high generation of isomers of the polystyrene monomer and aromatic compounds. The product obtained is mixed with base fuel oil at 60 °C at 250 rpm for a period of one hour, in percentages of 10 to 50% by mass. The 10% mixture has properties very close to those required by the standard fuel oil, presenting a viscosity of 108 mm 2 s −1 that adjusts to the requirements in burners for industrial applications; additionally, it has a Sulphur content lower than that of fuel oil without affecting its heating value.

Suggested Citation

  • Paul Palmay & Cesar Puente & Carla Haro & Joan Carles Bruno & Alberto Coronas, 2023. "Bio Oil as Cutter Stock in Fuel Oil Blends for Industrial Applications," Energies, MDPI, vol. 16(3), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1485-:d:1055734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2020. "Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes," Applied Energy, Elsevier, vol. 259(C).
    2. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mota, Francisco A.S. & Costa Filho, J.T. & Barreto, G.A., 2019. "The Nile tilapia viscera oil extraction for biodiesel production in Brazil: An economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 1-10.
    2. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability,, Springer.
    3. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    4. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    5. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    6. Chenying Li & Tiantian Zhang & Xi Wang & Zefeng Lian, 2022. "Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China," IJERPH, MDPI, vol. 19(20), pages 1-27, October.
    7. Monaem Elmnifi & Moneer Amhamed & Naji Abdelwanis & Otman Imrayed, 2018. "Waste-To-Energy Potential In Tripoli City-Libya," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 2(1), pages 1-3, January.
    8. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    9. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    10. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    11. Monaem Elmnifi & Moneer Alshelmany & Mabroka ALhammaly & Otman Imrayed & Ch Arslan, 2018. "Energy Recovery From Municipal Solid Waste Incinerati on Benghazi - Case Study," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 2(1), pages 19-23, January.
    12. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    13. Anthony Halog & Sandra Anieke, 2021. "A Review of Circular Economy Studies in Developed Countries and Its Potential Adoption in Developing Countries," Circular Economy and Sustainability,, Springer.
    14. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    15. Sogand Musivand & Maria Paola Bracciale & Martina Damizia & Paolo De Filippis & Benedetta de Caprariis, 2023. "Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis," Energies, MDPI, vol. 16(13), pages 1-13, June.
    16. Qahtan Thabit & Abdallah Nassour & Michael Nelles, 2022. "Facts and Figures on Aspects of Waste Management in Middle East and North Africa Region," Waste, MDPI, vol. 1(1), pages 1-29, November.
    17. Ye Li & Fan Tang & Dan Xu & Bing Xie, 2021. "Advances in Biological Nitrogen Removal of Landfill Leachate," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    18. Abdulrahman Abdeljaber & Rawan Zannerni & Wedad Masoud & Mohamed Abdallah & Lisandra Rocha-Meneses, 2022. "Eco-Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    19. Meza, Carlos Germán & Zuluaga Rodríguez, Catalina & D'Aquino, Camila Agner & Amado, Nilton Bispo & Rodrigues, Alcantaro & Sauer, Ildo Luis, 2019. "Toward a 100% renewable island: A case study of Ometepe's energy mix," Renewable Energy, Elsevier, vol. 132(C), pages 628-648.
    20. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1485-:d:1055734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.