IDEAS home Printed from https://ideas.repec.org/a/gam/jwaste/v1y2022i1p5-80d972189.html
   My bibliography  Save this article

Facts and Figures on Aspects of Waste Management in Middle East and North Africa Region

Author

Listed:
  • Qahtan Thabit

    (Department of Waste and Resource Management, Faculty of Agricultural and Environmental Sciences, University of Rostock, D-18059 Rostock, Germany)

  • Abdallah Nassour

    (Department of Waste and Resource Management, Faculty of Agricultural and Environmental Sciences, University of Rostock, D-18059 Rostock, Germany)

  • Michael Nelles

    (Department of Waste and Resource Management, Faculty of Agricultural and Environmental Sciences, University of Rostock, D-18059 Rostock, Germany
    Deutsches Biomasseforschungszentrum GmbH, D-04347 Leipzig, Germany)

Abstract

The waste management field in Middle Eastern and North African countries suffers from multiple drawbacks and chronic problems that require strategic solutions and collaboration among various institutions. Due to a lack of data, a financial deficit, limited economic resources for the municipalities, and singular treatment processes, until recently, waste has been dealt with as garbage that needs to be disposed of, while, in a large number of developed countries, waste now represents a substantial economic resource and an important source of materials that can be reinserted into the industrial sector. This paper presents a review of several aspects and sectors that are directly related to waste generation and the current situation regarding the waste management system in the Middle East and North Africa (MENA) region in terms of composition, generated amount/capita, existing treatment routes, and institutional frameworks. Furthermore, gross domestic production and population growth are specified as critical factors governing the waste sector in the region. Such data and information will increase the possibility of drawing a roadmap to convert the current waste treatment stream into a material flow concept and circular economy. The energy sector (energy consumption) is also considered to illustrate the potential role of waste if incineration technology (energy recovery from waste) is realized as a radical solution for the waste system in the region. Following a review of the literature, the main challenges in the waste management sector that need to be solved are summarized. The novelty of this work is two-fold. First, it elucidates the connection between gross domestic product (GDP), waste composition, and waste generation. According to the literature, countries with a high GDP produce a greater amount of waste (around 1.5–2.7 kg/capita/day) with a lower organic share of waste composition of around 40%, as they have an increased lifestyle rate. Second, a review of energy consumption per capita illuminates the essential role of waste as a source of energy.

Suggested Citation

  • Qahtan Thabit & Abdallah Nassour & Michael Nelles, 2022. "Facts and Figures on Aspects of Waste Management in Middle East and North Africa Region," Waste, MDPI, vol. 1(1), pages 1-29, November.
  • Handle: RePEc:gam:jwaste:v:1:y:2022:i:1:p:5-80:d:972189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-0391/1/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-0391/1/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Safwat Hemidat & Ouafa Achouri & Loubna El Fels & Sherien Elagroudy & Mohamed Hafidi & Benabbas Chaouki & Mostafa Ahmed & Isla Hodgkinson & Jinyang Guo, 2022. "Solid Waste Management in the Context of a Circular Economy in the MENA Region," Sustainability, MDPI, vol. 14(1), pages 1-24, January.
    2. Gaies, Brahim & Kaabia, Olfa & Ayadi, Rim & Guesmi, Khaled & Abid, Ilyes, 2019. "Financial development and energy consumption: Is the MENA region different?," Energy Policy, Elsevier, vol. 135(C).
    3. Sabah Mariyam & Logan Cochrane & Shifa Zuhara & Gordon McKay, 2022. "Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    4. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    5. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    6. Qahtan Thabit & Abdallah Nassour & Michael Nelles, 2020. "Potentiality of Waste-to-Energy Sector Coupling in the MENA Region: Jordan as a Case Study," Energies, MDPI, vol. 13(11), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Aljamal & Mark Speece, 2024. "Building Student Sustainability Competencies through a Trash-Practice Nudge Project: Service Learning Case Study in Kuwait," Sustainability, MDPI, vol. 16(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    2. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Mota, Francisco A.S. & Costa Filho, J.T. & Barreto, G.A., 2019. "The Nile tilapia viscera oil extraction for biodiesel production in Brazil: An economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 1-10.
    4. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability, Springer, vol. 3(1), pages 125-166, March.
    5. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    6. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    7. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    8. Maryam Hussain Abal-Seqan & Shaligram Pokharel & Khalid Kamal Naji, 2023. "Key Success Factors and Their Impact on the Performance of Construction Projects: Case in Qatar," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Naif Alsagr & Stefan F. Van Hemmen Almazor, 2020. "Oil Rent, Geopolitical Risk and Banking Sector Performance," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 305-314.
    10. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    11. Sławomir Kasiński & Marcin Dębowski & Gabriela Tylus & Marcin Rudnicki, 2022. "Characteristics of Wastewater from Municipal Waste Bio-Drying and Its Impact on Aquatic Environment—Long-Term Research on a Technical Scale," Energies, MDPI, vol. 15(24), pages 1-18, December.
    12. Aarthi Aishwarya Devendran & Brijesh Mainali & Dilip Khatiwada & Farzin Golzar & Krushna Mahapatra & Camila H. Toigo, 2023. "Optimization of Municipal Waste Streams in Achieving Urban Circularity in the City of Curitiba, Brazil," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    13. Burcak Polat, 2021. "The Impact of Financial Development on Renewable and Non-Renewable Energy Consumption," Energy Economics Letters, Asian Economic and Social Society, vol. 8(1), pages 42-48, June.
    14. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    15. Appiah-Otoo, Isaac & Chen, Xudong & Ampah, Jeffrey Dankwa, 2023. "Does financial structure affect renewable energy consumption? Evidence from G20 countries," Energy, Elsevier, vol. 272(C).
    16. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
    17. Olawumi O. Sadare & Olayile Ejekwu & Moloko F. Moshokoa & Monsurat O. Jimoh & Michael O. Daramola, 2021. "Membrane Purification Techniques for Recovery of Succinic Acid Obtained from Fermentation Broth during Bioconversion of Lignocellulosic Biomass: Current Advances and Future Perspectives," Sustainability, MDPI, vol. 13(12), pages 1-30, June.
    18. Chenying Li & Tiantian Zhang & Xi Wang & Zefeng Lian, 2022. "Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China," IJERPH, MDPI, vol. 19(20), pages 1-27, October.
    19. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    20. Ahmed Shaban & Fatma-Elzahraa Zaki & Islam H. Afefy & Giulio Di Gravio & Andrea Falegnami & Riccardo Patriarca, 2022. "An Optimization Model for the Design of a Sustainable Municipal Solid Waste Management System," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:1:y:2022:i:1:p:5-80:d:972189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.