IDEAS home Printed from https://ideas.repec.org/a/gam/jwaste/v1y2022i1p5-80d972189.html
   My bibliography  Save this article

Facts and Figures on Aspects of Waste Management in Middle East and North Africa Region

Author

Listed:
  • Qahtan Thabit

    (Department of Waste and Resource Management, Faculty of Agricultural and Environmental Sciences, University of Rostock, D-18059 Rostock, Germany)

  • Abdallah Nassour

    (Department of Waste and Resource Management, Faculty of Agricultural and Environmental Sciences, University of Rostock, D-18059 Rostock, Germany)

  • Michael Nelles

    (Department of Waste and Resource Management, Faculty of Agricultural and Environmental Sciences, University of Rostock, D-18059 Rostock, Germany
    Deutsches Biomasseforschungszentrum GmbH, D-04347 Leipzig, Germany)

Abstract

The waste management field in Middle Eastern and North African countries suffers from multiple drawbacks and chronic problems that require strategic solutions and collaboration among various institutions. Due to a lack of data, a financial deficit, limited economic resources for the municipalities, and singular treatment processes, until recently, waste has been dealt with as garbage that needs to be disposed of, while, in a large number of developed countries, waste now represents a substantial economic resource and an important source of materials that can be reinserted into the industrial sector. This paper presents a review of several aspects and sectors that are directly related to waste generation and the current situation regarding the waste management system in the Middle East and North Africa (MENA) region in terms of composition, generated amount/capita, existing treatment routes, and institutional frameworks. Furthermore, gross domestic production and population growth are specified as critical factors governing the waste sector in the region. Such data and information will increase the possibility of drawing a roadmap to convert the current waste treatment stream into a material flow concept and circular economy. The energy sector (energy consumption) is also considered to illustrate the potential role of waste if incineration technology (energy recovery from waste) is realized as a radical solution for the waste system in the region. Following a review of the literature, the main challenges in the waste management sector that need to be solved are summarized. The novelty of this work is two-fold. First, it elucidates the connection between gross domestic product (GDP), waste composition, and waste generation. According to the literature, countries with a high GDP produce a greater amount of waste (around 1.5–2.7 kg/capita/day) with a lower organic share of waste composition of around 40%, as they have an increased lifestyle rate. Second, a review of energy consumption per capita illuminates the essential role of waste as a source of energy.

Suggested Citation

  • Qahtan Thabit & Abdallah Nassour & Michael Nelles, 2022. "Facts and Figures on Aspects of Waste Management in Middle East and North Africa Region," Waste, MDPI, vol. 1(1), pages 1-29, November.
  • Handle: RePEc:gam:jwaste:v:1:y:2022:i:1:p:5-80:d:972189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-0391/1/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-0391/1/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    2. Safwat Hemidat & Ouafa Achouri & Loubna El Fels & Sherien Elagroudy & Mohamed Hafidi & Benabbas Chaouki & Mostafa Ahmed & Isla Hodgkinson & Jinyang Guo, 2022. "Solid Waste Management in the Context of a Circular Economy in the MENA Region," Sustainability, MDPI, vol. 14(1), pages 1-24, January.
    3. Sabah Mariyam & Logan Cochrane & Shifa Zuhara & Gordon McKay, 2022. "Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    4. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    5. Qahtan Thabit & Abdallah Nassour & Michael Nelles, 2020. "Potentiality of Waste-to-Energy Sector Coupling in the MENA Region: Jordan as a Case Study," Energies, MDPI, vol. 13(11), pages 1-19, June.
    6. Gaies, Brahim & Kaabia, Olfa & Ayadi, Rim & Guesmi, Khaled & Abid, Ilyes, 2019. "Financial development and energy consumption: Is the MENA region different?," Energy Policy, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Aljamal & Mark Speece, 2024. "Building Student Sustainability Competencies through a Trash-Practice Nudge Project: Service Learning Case Study in Kuwait," Sustainability, MDPI, vol. 16(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    2. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    4. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    5. Maryam Hussain Abal-Seqan & Shaligram Pokharel & Khalid Kamal Naji, 2023. "Key Success Factors and Their Impact on the Performance of Construction Projects: Case in Qatar," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Naif Alsagr & Stefan F. Van Hemmen Almazor, 2020. "Oil Rent, Geopolitical Risk and Banking Sector Performance," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 305-314.
    7. Aarthi Aishwarya Devendran & Brijesh Mainali & Dilip Khatiwada & Farzin Golzar & Krushna Mahapatra & Camila H. Toigo, 2023. "Optimization of Municipal Waste Streams in Achieving Urban Circularity in the City of Curitiba, Brazil," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    8. Burcak Polat, 2021. "The Impact of Financial Development on Renewable and Non-Renewable Energy Consumption," Energy Economics Letters, Asian Economic and Social Society, vol. 8(1), pages 42-48, June.
    9. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
    10. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    11. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    12. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    13. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    14. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    15. Monaem Elmnifi & Moneer Alshelmany & Mabroka ALhammaly & Otman Imrayed & Ch Arslan, 2018. "Energy Recovery From Municipal Solid Waste Incinerati on Benghazi - Case Study," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 2(1), pages 19-23, January.
    16. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    17. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    18. Lawal, Adedoyin Isola & Ozturk, Ilhan & Olanipekun, Ifedolapo O. & Asaleye, Abiola John, 2020. "Examining the linkages between electricity consumption and economic growth in African economies," Energy, Elsevier, vol. 208(C).
    19. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    20. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:1:y:2022:i:1:p:5-80:d:972189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.