IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2942-d1671170.html
   My bibliography  Save this article

Hybrid AI-Based Framework for Renewable Energy Forecasting: One-Stage Decomposition and Sample Entropy Reconstruction with Least-Squares Regression

Author

Listed:
  • Nahed Zemouri

    (Electrical Engineering Laboratory (LGE), Department of Electronics, Faculty of Technology, University Mohamed Boudiaf M’Sila, M’Sila 28000, Algeria)

  • Hatem Mezaache

    (Electrical Engineering Laboratory (LGE), Department of Electronics, Faculty of Technology, University Mohamed Boudiaf M’Sila, M’Sila 28000, Algeria)

  • Zakaria Zemali

    (Laboratory of Applied Automation and Industrial Diagnostics (LAADI), Faculty of Science and Technology, Ziane Achour University, Djelfa 17000, Algeria
    Department of Civil, Energetic, Environmental and Material Engineering, Mediterranea University, I-89124 Reggio Calabria, Italy)

  • Fabio La Foresta

    (Department of Civil, Energetic, Environmental and Material Engineering, Mediterranea University, I-89124 Reggio Calabria, Italy)

  • Mario Versaci

    (Department of Civil, Energetic, Environmental and Material Engineering, Mediterranea University, I-89124 Reggio Calabria, Italy)

  • Giovanni Angiulli

    (Department of Information Engineering, Infrastructures and Sustainable Energy, Mediterranea University, I-89124 Reggio Calabria, Italy)

Abstract

Accurate renewable energy forecasting is crucial for grid stability and efficient energy management. This study introduces a hybrid model that combines signal decomposition and artificial intelligence to enhance the prediction of solar radiation and wind speed. The framework uses a one-stage decomposition strategy, applying variational mode decomposition and an improved empirical mode decomposition method with adaptive noise. This process effectively extracts meaningful components while reducing background noise, improving data quality, and minimizing uncertainty. The complexity of these components is assessed using entropy-based selection to retain only the most relevant features. The refined data are then fed into advanced predictive models, including a bidirectional neural network for capturing long-term dependencies, an extreme learning machine, and a support vector regression model. These models address nonlinear patterns in the historical data. To optimize forecasting accuracy, outputs from all models are combined using a least-squares regression technique that assigns optimal weights to each prediction. The hybrid model was tested on datasets from three geographically diverse locations, encompassing varying weather conditions. Results show a notable improvement in accuracy, achieving a root mean square error as low as 2.18 and a coefficient of determination near 0.999. Compared to traditional methods, forecasting errors were reduced by up to 30%, demonstrating the model’s effectiveness in supporting sustainable and reliable energy systems.

Suggested Citation

  • Nahed Zemouri & Hatem Mezaache & Zakaria Zemali & Fabio La Foresta & Mario Versaci & Giovanni Angiulli, 2025. "Hybrid AI-Based Framework for Renewable Energy Forecasting: One-Stage Decomposition and Sample Entropy Reconstruction with Least-Squares Regression," Energies, MDPI, vol. 18(11), pages 1-40, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2942-:d:1671170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    2. Kgothatso Makubyane & Daniel Maposa, 2024. "Forecasting Short- and Long-Term Wind Speed in Limpopo Province Using Machine Learning and Extreme Value Theory," Forecasting, MDPI, vol. 6(4), pages 1-23, October.
    3. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    4. Hossein Bonakdari & Isa Ebtehaj & Pijush Samui & Bahram Gharabaghi, 2019. "Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3965-3984, September.
    5. Dimitrina Koeva & Ralena Kutkarska & Vladimir Zinoviev, 2023. "High Penetration of Renewable Energy Sources and Power Market Formation for Countries in Energy Transition: Assessment via Price Analysis and Energy Forecasting," Energies, MDPI, vol. 16(23), pages 1-23, November.
    6. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    7. Wu, Yujie & Wang, Jianzhou, 2016. "A novel hybrid model based on artificial neural networks for solar radiation prediction," Renewable Energy, Elsevier, vol. 89(C), pages 268-284.
    8. Derya Betul Unsal & Ahmet Aksoz & Saadin Oyucu & Josep M. Guerrero & Merve Guler, 2024. "A Comparative Study of AI Methods on Renewable Energy Prediction for Smart Grids: Case of Turkey," Sustainability, MDPI, vol. 16(7), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    2. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    3. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "The Concept of Risk and Possibilities of Application of Mathematical Methods in Supporting Decision Making for Sustainable Energy Development," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    5. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    6. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    7. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    8. Ye, Xiaoling & Liu, Chengcheng & Xiong, Xiong & Qi, Yinyi, 2025. "Recurrent attention encoder–decoder network for multi-step interval wind power prediction," Energy, Elsevier, vol. 315(C).
    9. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    10. Lai, Qingzhi & Ahn, Hyoung Jun & Kim, YoungJin & Kim, You Na & Lin, Xinfan, 2021. "New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery," Applied Energy, Elsevier, vol. 295(C).
    11. Jiang, Weiling & Jiang, Keyao & Zhang, Zhihao & Martek, Igor & Ruan, Congping & Lu, Gan, 2025. "The impact mechanism of political risk on foreign renewable energy investment in developing countries: The mediating role of vulnerability," Energy Policy, Elsevier, vol. 198(C).
    12. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    13. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    14. Wang, Shengyou & Li, Yuan & Shao, Chunfu & Wang, Pinxi & Wang, Aixi & Zhuge, Chengxiang, 2025. "An adaptive spatio-temporal graph recurrent network for short-term electric vehicle charging demand prediction," Applied Energy, Elsevier, vol. 383(C).
    15. Shengqi Zhang & Yateendra Mishra & Bei Yuan & Jianfeng Zhao & Mohammad Shahidehpour, 2018. "Primary Frequency Controller with Prediction-Based Droop Coefficient for Wind-Storage Systems under Spot Market Rules," Energies, MDPI, vol. 11(9), pages 1-19, September.
    16. Alexandros Korkovelos & Dimitrios Mentis & Morgan Bazilian & Mark Howells & Anwar Saraj & Sulaiman Fayez Hotaki & Fanny Missfeldt-Ringius, 2020. "Supporting Electrification Policy in Fragile States: A Conflict-Adjusted Geospatial Least Cost Approach for Afghanistan," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
    17. Pan, Xiaoxin & Wang, Long & Wang, Zhongju & Huang, Chao, 2022. "Short-term wind speed forecasting based on spatial-temporal graph transformer networks," Energy, Elsevier, vol. 253(C).
    18. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    19. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    20. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2942-:d:1671170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.