IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925000509.html
   My bibliography  Save this article

An adaptive spatio-temporal graph recurrent network for short-term electric vehicle charging demand prediction

Author

Listed:
  • Wang, Shengyou
  • Li, Yuan
  • Shao, Chunfu
  • Wang, Pinxi
  • Wang, Aixi
  • Zhuge, Chengxiang

Abstract

Predicting Electric vehicle (EV) charging demand can facilitate the efficient operation and management of the smart power grid and intelligent transportation systems. We propose an adaptive spatial-temporal graph recurrent network (ASTGRN) to predict the EV charging demand in short term at the charging station level. Specifically, we design an adaptive graph learning layer that learns the spatial correlations in a data-driven manner. Additionally, an embedding project layer is integrated to enhance the graph learning layer. Subsequently, a graph recurrent layer consisting graph convolutional kernel and gated recurrent unit is employed to extract spatial-temporal features from the observations. We evaluate the proposed ASTGRN model using a real-world EV GPS trajectory dataset containing charging information of over 76,000 EVs in Beijing. The experiment results suggest that ASTGRN achieves state-of-the-art performance compared to those advanced spatial-temporal prediction models (e.g., Temporal Graph Convolutional Network and GraphWave Net). The effectiveness of the proposed model in charging demand prediction indicates that the spatial correlation between different charging stations may not be related to geographical distance in the charging demand prediction task, and the use of prior knowledge of geographical location may undermine model performance.

Suggested Citation

  • Wang, Shengyou & Li, Yuan & Shao, Chunfu & Wang, Pinxi & Wang, Aixi & Zhuge, Chengxiang, 2025. "An adaptive spatio-temporal graph recurrent network for short-term electric vehicle charging demand prediction," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000509
    DOI: 10.1016/j.apenergy.2025.125320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    2. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    3. Wu, Tangjie & Ling, Qiang, 2024. "Self-supervised dynamic stochastic graph network for spatio-temporal wind speed forecasting," Energy, Elsevier, vol. 304(C).
    4. Chen, Sheng & Cheng, Hao & Zhang, Hongcai & Lv, Si & Wei, Zhinong & Jin, Yuyang, 2025. "Privacy-preserving coordination of power and transportation networks using spatiotemporal GAT for predicting EV charging demands," Applied Energy, Elsevier, vol. 377(PA).
    5. Xu, Jinhua & Li, Yuran & Lu, Wenbo & Wu, Shuai & Li, Yan, 2024. "A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    6. Lv, Zhihan & Wang, Nana & Lou, Ranran & Tian, Yajun & Guizani, Mohsen, 2023. "Towards carbon Neutrality: Prediction of wave energy based on improved GRU in Maritime transportation," Applied Energy, Elsevier, vol. 331(C).
    7. Zhang, Shiyao & Zhang, Shuyu & Yu, James J.Q. & Wei, Xuetao, 2024. "ST-AGNet: Dynamic power system state prediction with spatial–temporal attention graph-based network," Applied Energy, Elsevier, vol. 365(C).
    8. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    9. Razi Iqbal & Talal Ashraf Butt & Muhammad Afzaal & Khaled Salah, 2019. "Trust management in social Internet of vehicles: Factors, challenges, blockchain, and fog solutions," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477198, January.
    10. Ma, Tai-Yu & Faye, Sébastien, 2022. "Multistep electric vehicle charging station occupancy prediction using hybrid LSTM neural networks," Energy, Elsevier, vol. 244(PB).
    11. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    12. Li, Baozhu & Lv, Xiaotian & Chen, Jiaxin, 2024. "Demand and supply gap analysis of Chinese new energy vehicle charging infrastructure: Based on CNN-LSTM prediction model," Renewable Energy, Elsevier, vol. 220(C).
    13. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    14. Kuang, Haoxuan & Qu, Haohao & Deng, Kunxiang & Li, Jun, 2024. "A physics-informed graph learning approach for citywide electric vehicle charging demand prediction and pricing," Applied Energy, Elsevier, vol. 363(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang, Haoxuan & Deng, Kunxiang & You, Linlin & Li, Jun, 2025. "Citywide electric vehicle charging demand prediction approach considering urban region and dynamic influences," Energy, Elsevier, vol. 320(C).
    2. Ahmed M. Abed & Ali AlArjani, 2022. "The Neural Network Classifier Works Efficiently on Searching in DQN Using the Autonomous Internet of Things Hybridized by the Metaheuristic Techniques to Reduce the EVs’ Service Scheduling Time," Energies, MDPI, vol. 15(19), pages 1-25, September.
    3. Tian, Chenlu & Liu, Yechun & Zhang, Guiqing & Yang, Yalong & Yan, Yi & Li, Chengdong, 2024. "Transfer learning based hybrid model for power demand prediction of large-scale electric vehicles," Energy, Elsevier, vol. 300(C).
    4. Kuang, Haoxuan & Qu, Haohao & Deng, Kunxiang & Li, Jun, 2024. "A physics-informed graph learning approach for citywide electric vehicle charging demand prediction and pricing," Applied Energy, Elsevier, vol. 363(C).
    5. Zhuang, Yingrui & Cheng, Lin & Qi, Ning & Wang, Xinyi & Chen, Yue, 2025. "Real-time hosting capacity assessment for electric vehicles: A sequential forecast-then-optimize method," Applied Energy, Elsevier, vol. 380(C).
    6. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    7. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    8. Fu, Zhi & Liu, Xiaochen & Zhang, Ji & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2025. "Orderly solar charging of electric vehicles and its impact on charging behavior: A year-round field experiment," Applied Energy, Elsevier, vol. 381(C).
    9. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    10. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    11. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    12. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    13. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    14. Ye, Xiaoling & Liu, Chengcheng & Xiong, Xiong & Qi, Yinyi, 2025. "Recurrent attention encoder–decoder network for multi-step interval wind power prediction," Energy, Elsevier, vol. 315(C).
    15. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    16. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    17. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    18. Riya Sapra & Parneeta Dhaliwal, 2021. "Blockchain: The Perspective Future of Technology," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(2), pages 1-20, April.
    19. He, Youmeng & Gu, Chunhua & Gao, Yan & Wang, Jingqi, 2025. "Bi-level day-ahead and real-time hybrid pricing model and its reinforcement learning method," Energy, Elsevier, vol. 322(C).
    20. Hui Xiang & Xiaolei Li & Xiao Liao & Wei Cui & Fengkai Liu & Donghe Li, 2025. "Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges," Energies, MDPI, vol. 18(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.