IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2894-d1367360.html
   My bibliography  Save this article

A Comparative Study of AI Methods on Renewable Energy Prediction for Smart Grids: Case of Turkey

Author

Listed:
  • Derya Betul Unsal

    (Department of Electrical and Electronics Engineering, Cumhuriyet University, Sivas 58140, Turkey
    Renewable Energy Research Center, Cumhuriyet University, Sivas 58140, Turkey)

  • Ahmet Aksoz

    (MOBILERS Research Team, Sivas Cumhuriyet University, Sivas 58580, Turkey)

  • Saadin Oyucu

    (Department of Computer Engineering, Adıyaman University, Adıyaman 02040, Turkey)

  • Josep M. Guerrero

    (Department of Electronic Engineering (EEL), Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain)

  • Merve Guler

    (Renewable Energy Research Center, Cumhuriyet University, Sivas 58140, Turkey)

Abstract

Fossil fuels still have emerged as the predominant energy source for power generation on a global scale. In recent years, Turkey has experienced a notable decrease in the production of coal and natural gas energy, juxtaposed with a significant rise in the production of renewable energy sources. The study employed neural networks, ANNs (artificial neural networks), and LSTM (long short-term memory), as well as CNN (convolutional neural network) and hybrid CNN-LSTM designs, to assess Turkey’s energy potential. Real-time outcomes were produced by integrating these models with meteorological data. The objective was to design strategies for enhancing performance by comparing various models of outcomes. The data collected for Turkey as a whole are based on average values. Machine learning approaches were employed to mitigate the error rate seen in the acquired outcomes. Comparisons were conducted across light gradient boosting machine (LightGBM), gradient boosting regressor (GBR), and random forest regressor (RF) techniques, which represent machine learning models, alongside deep learning models. Based on the findings of the comparative analyses, it was determined that the machine learning model, LightGBM, exhibited the most favorable performance in enhancing the accuracy of predictions. Conversely, the hybrid model, CNN-LSTM, had the greatest rate of inaccuracy. This study will serve as a guide for renewable energy researchers, especially in developing countries such as Turkey that have not switched to a smart grid system.

Suggested Citation

  • Derya Betul Unsal & Ahmet Aksoz & Saadin Oyucu & Josep M. Guerrero & Merve Guler, 2024. "A Comparative Study of AI Methods on Renewable Energy Prediction for Smart Grids: Case of Turkey," Sustainability, MDPI, vol. 16(7), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2894-:d:1367360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    3. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Muhammad Aslam & Jae-Myeong Lee & Hyung-Seung Kim & Seung-Jae Lee & Sugwon Hong, 2019. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study," Energies, MDPI, vol. 13(1), pages 1-15, December.
    5. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.
    6. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    7. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    8. Nakıp, Mert & Çopur, Onur & Biyik, Emrah & Güzeliş, Cüneyt, 2023. "Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network," Applied Energy, Elsevier, vol. 340(C).
    9. Marta Poncela-Blanco & Pilar Poncela, 2021. "Improving Wind Power Forecasts: Combination through Multivariate Dimension Reduction Techniques," Energies, MDPI, vol. 14(5), pages 1-16, March.
    10. Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.
    11. Phathutshedzo Mpfumali & Caston Sigauke & Alphonce Bere & Sophie Mulaudzi, 2019. "Day Ahead Hourly Global Horizontal Irradiance Forecasting—Application to South African Data," Energies, MDPI, vol. 12(18), pages 1-28, September.
    12. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    13. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Lu, Peng & Ye, Lin & Tang, Yong & Zhao, Yongning & Zhong, Wuzhi & Qu, Ying & Zhai, Bingxu, 2021. "Ultra-short-term combined prediction approach based on kernel function switch mechanism," Renewable Energy, Elsevier, vol. 164(C), pages 842-866.
    15. Gulay, Emrah & Sen, Mustafa & Akgun, Omer Burak, 2024. "Forecasting electricity production from various energy sources in Türkiye: A predictive analysis of time series, deep learning, and hybrid models," Energy, Elsevier, vol. 286(C).
    16. Zhenhua Xiong & Yan Chen & Guihua Ban & Yixin Zhuo & Kui Huang, 2022. "A Hybrid Algorithm for Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(19), pages 1-11, October.
    17. Endemaño-Ventura, Lázaro & Serrano González, Javier & Roldán Fernández, Juan Manuel & Burgos Payán, Manuel & Riquelme Santos, Jesús Manuel, 2021. "Optimal energy bidding for renewable plants: A practical application to an actual wind farm in Spain," Renewable Energy, Elsevier, vol. 175(C), pages 1111-1126.
    18. Li, Binghui & Feng, Cong & Siebenschuh, Carlo & Zhang, Rui & Spyrou, Evangelia & Krishnan, Venkat & Hobbs, Benjamin F. & Zhang, Jie, 2022. "Sizing ramping reserve using probabilistic solar forecasts: A data-driven method," Applied Energy, Elsevier, vol. 313(C).
    19. Sewdien, V.N. & Preece, R. & Torres, J.L. Rueda & Rakhshani, E. & van der Meijden, M., 2020. "Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting," Renewable Energy, Elsevier, vol. 161(C), pages 878-892.
    20. Olatunji, Kehinde O. & Ahmed, Noor A. & Madyira, Daniel M. & Adebayo, Ademola O. & Ogunkunle, Oyetola & Adeleke, Oluwatobi, 2022. "Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction," Renewable Energy, Elsevier, vol. 189(C), pages 288-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2894-:d:1367360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.