IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2840-d1667667.html
   My bibliography  Save this article

Charging Incentive Design with Minimum Price Guarantee for Battery Energy Storage Systems to Mitigate Grid Congestion

Author

Listed:
  • Yujiro Tanno

    (Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555, Japan)

  • Akihisa Kaneko

    (Advanced Collaborative Research Organization for Smart Society, Waseda University, Tokyo 169-8555, Japan)

  • Yu Fujimoto

    (Advanced Collaborative Research Organization for Smart Society, Waseda University, Tokyo 169-8555, Japan)

  • Yasuhiro Hayashi

    (Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555, Japan)

  • Yuji Hanai

    (Grid Innovation Research Laboratory, Central Research Institute of Power Industry, Yokosuka 240-0196, Japan)

  • Hideo Koseki

    (Grid Innovation Research Laboratory, Central Research Institute of Power Industry, Yokosuka 240-0196, Japan)

Abstract

The large-scale integration of renewable energy sources (RESs) has raised concerns regarding grid congestion in Japan. Battery energy storage systems (BESSs) can mitigate congestion by adjusting charging schedules; however, BESS owners basically prioritize market arbitrage, which may not be aligned with congestion mitigation. This paper proposes a charging incentive design to guide arbitrage-oriented BESS charging toward time periods that are effective for grid congestion mitigation. The system operator predicts congested hours and ensures that BESS owners can purchase electricity at the lowest daily market price. This design intends to shift the BESS charging time towards congestion periods. Because market prices tend to decline during congestion periods, the proposed method reduces the operator’s financial burden while encouraging congestion-mitigating charging behavior. Numerical simulations using a simplified Japanese east-side power system model demonstrate that the proposed method reduced the congestion mitigation costs by 3.86% and curtailed the RES output by 3.89%, compared to using no incentive method (current operation in Japan). Furthermore, additional payments to BESS owners accounted for only around 7% of the resulting cost savings, indicating that the proposed method achieved lower overall system operating costs.

Suggested Citation

  • Yujiro Tanno & Akihisa Kaneko & Yu Fujimoto & Yasuhiro Hayashi & Yuji Hanai & Hideo Koseki, 2025. "Charging Incentive Design with Minimum Price Guarantee for Battery Energy Storage Systems to Mitigate Grid Congestion," Energies, MDPI, vol. 18(11), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2840-:d:1667667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayaraj, Nikhil & Klarin, Anton & Ananthram, Subramaniam, 2024. "The transition towards solar energy storage: a multi-level perspective," Energy Policy, Elsevier, vol. 192(C).
    2. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    3. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    4. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
    5. Jiyoung Eum & Yongki Kim, 2020. "Analysis on Operation Modes of Residential BESS with Balcony-PV for Apartment Houses in Korea," Sustainability, MDPI, vol. 13(1), pages 1-9, December.
    6. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Zheng, Menglian & Wang, Xinhao & Meinrenken, Christoph J. & Ding, Yi, 2018. "Economic and environmental benefits of coordinating dispatch among distributed electricity storage," Applied Energy, Elsevier, vol. 210(C), pages 842-855.
    8. Heine, Karl & Thatte, Amogh & Tabares-Velasco, Paulo Cesar, 2019. "A simulation approach to sizing batteries for integration with net-zero energy residential buildings," Renewable Energy, Elsevier, vol. 139(C), pages 176-185.
    9. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    10. Andreolli, Francesca & D’Alpaos, Chiara & Kort, Peter, 2025. "Does P2P trading favor investments in PV–Battery Systems?," Energy Economics, Elsevier, vol. 145(C).
    11. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    12. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    13. Jessica Thomsen & Christoph Weber, "undated". "How the design of retail prices, network charges, and levies affects profitability and operation of small-scale PV-Battery Storage Systems," EWL Working Papers 1903, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    14. Tassenoy, Robin & Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2022. "Techno-economic assessment of Carnot batteries for load-shifting of solar PV production of an office building," Renewable Energy, Elsevier, vol. 199(C), pages 1133-1144.
    15. Nubia Ilia Ponce de León Puig & Leonardo Acho & José Rodellar, 2018. "Design and Experimental Implementation of a Hysteresis Algorithm to Optimize the Maximum Power Point Extracted from a Photovoltaic System," Energies, MDPI, vol. 11(7), pages 1-24, July.
    16. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    17. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    18. Ayat-Allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Post-Print hal-03344439, HAL.
    19. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    20. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2840-:d:1667667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.