IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2506-d1654657.html
   My bibliography  Save this article

Modeling and Analysis of Current-Carrying Coils Versus Rotating Magnet Transmitters for Low-Frequency Electrodynamic Wireless Power Transmission

Author

Listed:
  • Vernon S. Crasto

    (Interdisciplinary Microsystems Group, University of Florida, Gainesville, FL 32611, USA)

  • Nicolas Garraud

    (CEA-Leti (Laboratoire d’Électronique des Technologies de l’Information), Université Grenoble Alpes, 38000 Grenoble, France)

  • Matthew G. Stormant

    (Interdisciplinary Microsystems Group, University of Florida, Gainesville, FL 32611, USA)

  • David P. Arnold

    (Interdisciplinary Microsystems Group, University of Florida, Gainesville, FL 32611, USA)

Abstract

Current-carrying coils and rotating permanent magnets can be used to create time-varying excitation magnetic fields for electrodynamic wireless power transmission (EWPT). Both types of transmitters produce low-frequency, time-varying fields at the locations of the receiver, but with fundamental differences. A coil transmitter produces a uniaxial magnetic field, where the direction of the field is along a single axis, but the amplitude varies in a bipolar fashion. In contrast, a rotating magnet transmitter produces a rotating magnetic field, with the amplitude varying in two orthogonal directions. Building on prior work for coil transmitters, this manuscript presents the modeling and a simulation framework for rotating magnet transmitters. The performance of an EWPT system is then studied both theoretically and experimentally for both transmitter types. For the same B-field amplitude (501 µT) and a fixed transmitter-receiver distance of 12 cm, a receiver driven by a coil transmitter produces 38 mW, whereas the same receiver driven by a rotating magnet transmitter produces 149 mW, nearly four times higher. This power increase is a result of 50% higher receiver rotation speeds using the rotating magnet transmitter. The power transfer efficiency is also six times higher for the rotating magnet transmitter.

Suggested Citation

  • Vernon S. Crasto & Nicolas Garraud & Matthew G. Stormant & David P. Arnold, 2025. "Modeling and Analysis of Current-Carrying Coils Versus Rotating Magnet Transmitters for Low-Frequency Electrodynamic Wireless Power Transmission," Energies, MDPI, vol. 18(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2506-:d:1654657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    2. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tariq, Mohd, 2021. "Experimental verification of a flexible vehicle-to-grid charger for power grid load variance reduction," Energy, Elsevier, vol. 228(C).
    3. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Songyan Niu & Qingyu Zhao & Haibiao Chen & Hang Yu & Shuangxia Niu & Linni Jian, 2022. "Underwater Wireless Charging System of Unmanned Surface Vehicles with High Power, Large Misalignment Tolerance and Light Weight: Analysis, Design and Optimization," Energies, MDPI, vol. 15(24), pages 1-19, December.
    6. Liu, Wei & Chau, K.T. & Tian, Xiaoyang & Wang, Hui & Hua, Zhichao, 2023. "Smart wireless power transfer — opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    7. Murugan Venkatesan & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2022. "A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications," Energies, MDPI, vol. 15(20), pages 1-29, October.
    8. Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).
    9. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    10. Hassan Khalid & Saad Mekhilef & Marizan Binti Mubin & Mehdi Seyedmahmoudian & Alex Stojcevski & Muhyaddin Rawa & Ben Horan, 2022. "Analysis and Design of Series-LC-Switch Capacitor Multistage High Gain DC-DC Boost Converter for Electric Vehicle Applications," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    11. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Konstantina Dimitriadou & Nick Rigogiannis & Symeon Fountoukidis & Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    13. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    14. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Tiande Mo & Yu Li & Kin-tak Lau & Chi Kin Poon & Yinghong Wu & Yang Luo, 2022. "Trends and Emerging Technologies for the Development of Electric Vehicles," Energies, MDPI, vol. 15(17), pages 1-34, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2506-:d:1654657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.