IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4495-d790535.html
   My bibliography  Save this article

Analysis and Design of Series-LC-Switch Capacitor Multistage High Gain DC-DC Boost Converter for Electric Vehicle Applications

Author

Listed:
  • Hassan Khalid

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Saad Mekhilef

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
    Center of Research Excellence in Renewable Energy, and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Marizan Binti Mubin

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Mehdi Seyedmahmoudian

    (School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Alex Stojcevski

    (School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Muhyaddin Rawa

    (Center of Research Excellence in Renewable Energy, and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ben Horan

    (School of Engineering, Deakin University Geelong Waurn Ponds Campus, 75 Pigdons Rd, Geelong, VIC 3216, Australia)

Abstract

Research into modern transportation systems is currently in progress in order to fully replace the traditional inter-combustible engine with a noiseless, fast, energy-efficient, and environmentally friendly electric vehicle. Electric vehicles depend on an electric motor and require highly efficient converter drive circuits. Among these converters, DC-DC boost converters play a major role in charging not only the battery banks but also in providing the DC-link excitation voltage in transformerless applications. However, the development of these converters, which have higher voltage and current gain with minimum components, minimum voltage, and current stress, is quite challenging. Therefore, this research work aims to address these issues and also to improve overall system performance. These aims are achieved by developing a series LC-based single-stage boost converter, and extending its gain through a multi-stage boost converter using switch capacitor phenomena. This article also presents a complete operating model in continuous conduction mode. The proposed converter is tested under various testing conditions, such as output loading, input voltage levels, and duty cycle ratio for a 50 W resistive load. The results are compared with existing models. The proposed converter is stated to have achieved the highest efficiency, i.e., 96.5 % , along with extendable voltage gain with reduced voltage and current stresses, which is a major contribution to this research field.

Suggested Citation

  • Hassan Khalid & Saad Mekhilef & Marizan Binti Mubin & Mehdi Seyedmahmoudian & Alex Stojcevski & Muhyaddin Rawa & Ben Horan, 2022. "Analysis and Design of Series-LC-Switch Capacitor Multistage High Gain DC-DC Boost Converter for Electric Vehicle Applications," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4495-:d:790535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Zeeshan Malik & Haoyong Chen & Muhammad Shahzad Nazir & Irfan Ahmad Khan & Ahmed N. Abdalla & Amjad Ali & Wan Chen, 2020. "A New Efficient Step-Up Boost Converter with CLD Cell for Electric Vehicle and New Energy Systems," Energies, MDPI, vol. 13(7), pages 1-14, April.
    2. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Liu, Wei & Chau, K.T. & Tian, Xiaoyang & Wang, Hui & Hua, Zhichao, 2023. "Smart wireless power transfer — opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    5. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    6. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    7. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    8. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    9. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    10. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    11. Piotr Zimoch & Marcin Kasprzak & Kamil Kierepka, 2020. "Influence of MOSFET Parasitic Capacitance on the Operation of Interleaved ZVS Boost Converters," Energies, MDPI, vol. 13(22), pages 1-17, November.
    12. Tan, Kang Miao & Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Mansor, Muhamad & Teh, Jiashen & Guerrero, Josep M., 2023. "Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    14. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    15. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    16. Ruben Garruto & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "Connecting Parking Facilities to the Electric Grid: A Vehicle-to-Grid Feasibility Study in a Railway Station’s Car Park," Energies, MDPI, vol. 13(12), pages 1-23, June.
    17. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    18. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    19. Zaneti, Letícia A.L. & Arias, Nataly Bañol & de Almeida, Madson C. & Rider, Marcos J., 2022. "Sustainable charging schedule of electric buses in a University Campus: A rolling horizon approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4495-:d:790535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.