IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2477-d1653806.html
   My bibliography  Save this article

Socioeconomic Determinants of Biomass Energy Transition in China: A Multiregional Spatial Analysis for Sustainable Development

Author

Listed:
  • Chanyun Li

    (School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Yifei Zhang

    (School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Chenshuo Ma

    (School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

Abstract

This study investigates the socioeconomic determinants governing biomass energy transitions in rural areas of Eastern China through a multiregional spatial analysis. Drawing on time-series data from national and local statistical yearbooks, screened and processed to ensure consistency, the research analyzes evolving rural energy consumption patterns across nine cities in Heilongjiang, Jiangsu, and Guangdong provinces. Biomass energy potential was estimated by integrating crop production and domestic waste data with region-specific residue-to-product ratios, calorific values, and conversion efficiencies. These estimates were further spatialized through GIS-based surplus–deficit modeling to reveal regional disparities in supply–demand balance. The analysis identifies a critical income threshold, whereby lower-income regions exhibit rapid growth in energy consumption until reaching a saturation point around RMB 13,000, while higher-income areas experience continued increases in energy demand beyond the capacity of biomass resources to supply. The findings emphasize that an integrated approach, incorporating agricultural residue and domestic waste utilization, is essential for facilitating sustainable energy transitions, particularly in economically advanced regions. Furthermore, the study develops a scalable framework that integrates socioeconomic and spatial variables into biomass energy planning, underscoring the need for regional transition strategies to address not only resource endowments but also demographic mobility, urbanization dynamics, and income-driven consumption behaviors.

Suggested Citation

  • Chanyun Li & Yifei Zhang & Chenshuo Ma, 2025. "Socioeconomic Determinants of Biomass Energy Transition in China: A Multiregional Spatial Analysis for Sustainable Development," Energies, MDPI, vol. 18(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2477-:d:1653806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huseyin Kurtulus Ozcan & Senem Yazici Guvenc & Lokman Guvenc & Goksel Demir, 2016. "Municipal Solid Waste Characterization According to Different Income Levels: A Case Study," Sustainability, MDPI, vol. 8(10), pages 1-11, October.
    2. Ming Meng & Shucheng Wu & Jin Zhou & Xinfang Wang, 2019. "What is Currently Driving the Growth of China’s Household Electricity Consumption? A Clustering and Decomposition Analysis," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    3. Ghoddusi, Hamed & Rodivilov, Alexander & Roy, Mandira, 2021. "Income elasticity of demand versus consumption: Implications for energy policy analysis," Energy Economics, Elsevier, vol. 95(C).
    4. Zhou, Hui & Meng, AiHong & Long, YanQiu & Li, QingHai & Zhang, YanGuo, 2014. "An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 107-122.
    5. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    6. Ma, Shaoyue & Xu, Xiangbo & Li, Chang & Zhang, Linxiu & Sun, Mingxing, 2021. "Energy consumption inequality decrease with energy consumption increase: Evidence from rural China at micro scale," Energy Policy, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Na & Fu, Xiaodong & Wang, Shaobin & Yang, Hao & Li, Zhen, 2022. "Convergence characteristics and distribution patterns of residential electricity consumption in China: An urban-rural gap perspective," Energy, Elsevier, vol. 254(PB).
    2. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    3. Gao, Yuan & Yu, Lu, 2024. "Understanding the impacts of ecological compensation policies on energy poverty: insights from forest communities in Zhejiang, China," Land Use Policy, Elsevier, vol. 142(C).
    4. Wei Wang & Yanbin Li & Jinzhong Li & Yun Li, 2024. "Can pumped-storage power stations stimulate rural revitalization? Evidence from the four-party evolutionary game," Journal of Evolutionary Economics, Springer, vol. 34(3), pages 595-645, July.
    5. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    6. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Zhu, Lin & Sheng, Yu & Liao, Hua & Blaschke, Maximilian J., 2025. "Enhancing clean cooking energy transition through living facility improvements: Experience from China," Energy Economics, Elsevier, vol. 144(C).
    8. Paul Taboada-González & Quetzalli Aguilar-Virgen & Liliana Márquez-Benavides, 2017. "Recyclables Valorisation as the Best Strategy for Achieving Landfill CO 2 e Emissions Abatement from Domestic Waste: Game Theory," Sustainability, MDPI, vol. 9(7), pages 1-10, July.
    9. Faisal A. Osra & Huseyin Kurtulus Ozcan & Jaber S. Alzahrani & Mohammad S. Alsoufi, 2021. "Municipal Solid Waste Characterization and Landfill Gas Generation in Kakia Landfill, Makkah," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    10. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    11. Sun, Shuyu & Tong, Kangkang, 2024. "Rural-urban inequality in energy use sufficiency and efficiency during a rapid urbanization period," Applied Energy, Elsevier, vol. 364(C).
    12. Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "Does financial inclusion achieve the dual dividends of narrowing carbon inequality within cities and between cities? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    13. Zheng, Xinzhu & Wang, Ranran & Liddle, Brantley & Wen, Yuli & Lin, Lu & Wang, Lining, 2022. "Crude oil footprint in the rapidly changing world and implications from their income and price elasticities," Energy Policy, Elsevier, vol. 169(C).
    14. Zhou, Lingfang & He, Weijun & Kong, Yang & Zhang, Zhiqiu, 2025. "Climate change cognition and biodiversity conservation awareness facilitate household clean energy consumption: Evidence from a biodiversity hotspot," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    15. Weiguo Dong & Zhiwen Chen & Jiacong Chen & Zhao Jia Ting & Rui Zhang & Guozhao Ji & Ming Zhao, 2022. "A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes," Energies, MDPI, vol. 15(7), pages 1-14, April.
    16. Liu, Yang & Du, Junying & Wang, Kun, 2024. "Towards common prosperity: The role of mitigating energy inequality," Energy Policy, Elsevier, vol. 195(C).
    17. Noushabadi, Abolfazl Sajadi & Dashti, Amir & Ahmadijokani, Farhad & Hu, Jinguang & Mohammadi, Amir H., 2021. "Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation," Renewable Energy, Elsevier, vol. 179(C), pages 550-562.
    18. Feng Dong & Bolin Yu & Yifei Hua & Shuaiqing Zhang & Yue Wang, 2018. "A Comparative Analysis of Residential Energy Consumption in Urban and Rural China: Determinants and Regional Disparities," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    19. Sen, Kanchan Kumar & Chapman, Andrew J. & Saha, Bidyut Baran, 2024. "Women's empowerment: A catalyst for addressing energy poverty and energy inequality in developing countries," Energy, Elsevier, vol. 313(C).
    20. Liu, Yili & Xing, Peixuan & Liu, Jianguo, 2017. "Environmental performance evaluation of different municipal solid waste management scenarios in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 98-106.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2477-:d:1653806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.