IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1808-d1372913.html
   My bibliography  Save this article

Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage, and Utilization

Author

Listed:
  • Zenon Ziobrowski

    (Institute of Chemical Engineering Polish Academy of Sciences, 44-100 Gliwice, Poland)

  • Adam Rotkegel

    (Institute of Chemical Engineering Polish Academy of Sciences, 44-100 Gliwice, Poland)

Abstract

To reach climate neutrality by 2050, a goal that the European Union set itself, it is necessary to change and modify the whole EU’s energy system through deep decarbonization and reduction of greenhouse-gas emissions. The study presents a current insight into the global energy-transition pathway based on the hydrogen energy industry chain. The paper provides a critical analysis of the role of clean hydrogen based on renewable energy sources (green hydrogen) and fossil-fuels-based hydrogen (blue hydrogen) in the development of a new hydrogen-based economy and the reduction of greenhouse-gas emissions. The actual status, costs, future directions, and recommendations for low-carbon hydrogen development and commercial deployment are addressed. Additionally, the integration of hydrogen production with CCUS technologies is presented.

Suggested Citation

  • Zenon Ziobrowski & Adam Rotkegel, 2024. "Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage, and Utilization," Energies, MDPI, vol. 17(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1808-:d:1372913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yilmaz, Fatih & Selbaş, Reşat, 2017. "Thermodynamic performance assessment of solar based Sulfur-Iodine thermochemical cycle for hydrogen generation," Energy, Elsevier, vol. 140(P1), pages 520-529.
    2. Rau, Greg H. & Baird, Jim R., 2018. "Negative-CO2-emissions ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 265-272.
    3. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Bai & Fangming Cheng & Yuting Dong, 2024. "Experimental Investigation and Chemical Kinetics Analysis of Carbon Dioxide Inhibition on Hydrogen-Enriched Liquefied Petroleum Gas (LPG) Explosions," Energies, MDPI, vol. 17(21), pages 1-14, October.
    2. Kwamena Opoku Duartey & William Ampomah & Hamid Rahnema & Mohamed Mehana, 2025. "Underground Hydrogen Storage: Transforming Subsurface Science into Sustainable Energy Solutions," Energies, MDPI, vol. 18(3), pages 1-32, February.
    3. Pengcheng Zhang & Boliang Lu & Yijie Qu & Haslindar Ibrahim & Hao Ding, 2025. "Efficiency Measurement and Trend Analysis of the Hydrogen Energy Industry Chain in China," Sustainability, MDPI, vol. 17(7), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    2. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    3. Sun, Xue & Li, Xiaofei & Zeng, Jingxin & Song, Qiang & Yang, Zhen & Duan, Yuanyuan, 2023. "Energy and exergy analysis of a novel solar-hydrogen production system with S–I thermochemical cycle," Energy, Elsevier, vol. 283(C).
    4. Anna G. Nickoloff & Sophia T. Olim & Michael Eby & Andrew J. Weaver, 2025. "An assessment of ocean thermal energy conversion resources and climate change mitigation potential," Climatic Change, Springer, vol. 178(5), pages 1-21, May.
    5. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    6. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    7. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    8. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    9. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    10. Alçelik, Necdet & Sarıdemir, Suat & Polat, Fikret & Ağbulut, Ümit, 2024. "Role of hydrogen-enrichment for in-direct diesel engine behaviours fuelled with the diesel-waste biodiesel blends," Energy, Elsevier, vol. 302(C).
    11. Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2020. "Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 205(C).
    12. González Rodríguez, Daniel & Brayner de Oliveira Lira, Carlos Alberto & García Parra, Lázaro Roger & García Hernández, Carlos Rafael & de la Torre Valdés, Raciel, 2018. "Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production," Energy, Elsevier, vol. 147(C), pages 1165-1176.
    13. Jiao, Fan & Lu, Buchu & Chen, Chen & Liu, Qibin, 2021. "Exergy transfer and degeneration in thermochemical cycle reactions for hydrogen production: Novel exergy- and energy level-based methods," Energy, Elsevier, vol. 219(C).
    14. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    15. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
    16. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    17. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    18. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    19. Huo, Erguang & Chen, Wei & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Thermodynamic analysis and optimization of a combined cooling and power system using ocean thermal energy and solar energy," Energy, Elsevier, vol. 278(PA).
    20. Lowy, Daniel A. & Melendez, Jesus R. & Mátyás, Bence, 2024. "Electroreduction of carbon dioxide to liquid fuels: A low-cost, sustainable technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1808-:d:1372913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.