IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p743-d1333242.html
   My bibliography  Save this article

Locational Role Analysis of Energy Storage Systems Based on Optimal Capacity Needs and Operations under High Penetration of Renewable Energy

Author

Listed:
  • Heejung Park

    (School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea)

Abstract

As the need for energy storage systems (ESSs) capacity is increasing due to high accommodation of renewable resources, it is crucial to analyze in which location and for what purpose the ESSs are required to achieve the highest efficiency. Investors and system operators can place and operate the ESSs as expected based on this analysis. Therefore, this study assesses the specific roles of ESSs in a grid system based on their optimal capacity needs, locations, and operations. A long-term simulation model using mixed-integer programming is proposed to obtain these optimal solutions, such as ESS capacity and operational schedules for energy and reserves. Four-week operational simulations are performed for each month using data from the California Independent System Operator. ESSs are placed at sites with solar photovoltaic (PV) systems or wind farms, at baseload generator buses, and at load buses to verify the role of ESSs, depending on the locational differences. The detailed roles are analyzed from the aspects of flexible capacity supply, reserve deployments, time-shifting renewable and thermal energy generation, and costs. The results show that the ESSs on the baseload generation side provide flexibility by time-shifting baseload generation and turn on baseload generators, even when the net load is small. For instance, the required capacity of the flexible thermal generators, such as natural gas turbine generators, is about 3004 MW without the ESS operations in May. When 450 MW ESSs colocated with solar PVs are operated, the required flexible capacity of the thermal generators is lowered to 2404 MW. Moreover, ESSs are highly utilized as a downward reserve provider, although their costs for reserves are higher than thermal generators.

Suggested Citation

  • Heejung Park, 2024. "Locational Role Analysis of Energy Storage Systems Based on Optimal Capacity Needs and Operations under High Penetration of Renewable Energy," Energies, MDPI, vol. 17(3), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:743-:d:1333242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    2. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    3. Troy, Niamh & Denny, Eleanor & O'Malley, Mark, 2010. "Base-load cycling on a system with significant wind penetration," MPRA Paper 34848, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    2. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    3. Bennett, Jeffrey A. & Fuhrman, Jay & Brown, Tyler & Andrews, Nathan & Fittro, Roger & Clarens, Andres F., 2019. "Feasibility of Using sCO2 Turbines to Balance Load in Power Grids with a High Deployment of Solar Generation," Energy, Elsevier, vol. 181(C), pages 548-560.
    4. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    5. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    7. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    8. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    9. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.
    10. Komiyama, Ryoichi & Fujii, Yasumasa, 2015. "Long-term scenario analysis of nuclear energy and variable renewables in Japan's power generation mix considering flexible power resources," Energy Policy, Elsevier, vol. 83(C), pages 169-184.
    11. Aidan Tuohy & Ben Kaun & Robert Entriken, 2014. "Storage and demand-side options for integrating wind power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 93-109, January.
    12. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    13. Thomas Patsialis & Ioannis Kougias & Nerantzis Kazakis & Nicolaos Theodossiou & Peter Droege, 2016. "Supporting Renewables’ Penetration in Remote Areas through the Transformation of Non-Powered Dams," Energies, MDPI, vol. 9(12), pages 1-14, December.
    14. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    15. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    16. Komiyama, Ryoichi & Fujii, Yasumasa, 2017. "Assessment of post-Fukushima renewable energy policy in Japan's nation-wide power grid," Energy Policy, Elsevier, vol. 101(C), pages 594-611.
    17. Bennett, Jeffrey A. & Fitts, Jeffrey P. & Clarens, Andres F., 2022. "Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling," Applied Energy, Elsevier, vol. 325(C).
    18. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    19. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    20. Norberto Martinez & Alejandra Tabares & John F. Franco, 2021. "Generation of Alternative Battery Allocation Proposals in Distribution Systems by the Optimization of Different Economic Metrics within a Mathematical Model," Energies, MDPI, vol. 14(6), pages 1-17, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:743-:d:1333242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.