IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5914-d1529066.html
   My bibliography  Save this article

10 MW FOWT Semi-Submersible Multi-Objective Optimization: A Comparative Study of PSO, SA, and ACO

Author

Listed:
  • Souleymane Drabo

    (The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Siqi Lai

    (Ocean Academy, Zhejiang University, Zhoushan 316021, China)

  • Hongwei Liu

    (The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    Zhejiang Windey Co., Ltd., Hangzhou 310012, China)

  • Xiangheng Feng

    (The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    Zhejiang Key Laboratory of Wind Power Generation Technology, Hangzhou 310012, China)

Abstract

The present study aims to carry out a comparative Multi-Objective Optimization (MOO) of a 10 MW FOWT semi-submersible using three different metaheuristic optimization techniques and a sophisticated approach for optimizing a floating platform. This novel framework enables highly efficient 3D plots, an optimization loop, and the automatic and comparative output of solutions. Python, the main interface, integrated PyMAPDL and Pymoo for intricate modeling and simulation tasks. For this case study, the ZJUS10 Floating Offshore Wind Turbine (FOWT) platform, developed by the state key laboratory of mechatronics and fluid power at Zhejiang University, was employed as the basis. Key criteria such as platform stability, overall structural mass, and stress were pivotal in formulating the objective functions. Based on a preliminary study, the three metaheuristic optimization algorithms chosen for optimization were Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Ant Colony Optimization (ACO). Then, the solutions were evaluated based on Pareto dominance, leading to a Pareto front, a curve that represents the best possible trade-offs among the objectives. Each algorithm’s convergence was meticulously evaluated, leading to the selection of the optimal design solution. The results evaluated in simulations elucidate the strengths and limitations of each optimization method, providing valuable insights into their efficacy for complex engineering design challenges. In the post-processing phase, the performances of the optimized FOWT platforms were thoroughly compared both among themselves and with the original model, resulting in validation. Finally, the ACO algorithm delivered a highly effective solution within the framework, achieving reductions of 19.8% in weight, 40.1% in pitch, and 12.7% in stress relative to the original model.

Suggested Citation

  • Souleymane Drabo & Siqi Lai & Hongwei Liu & Xiangheng Feng, 2024. "10 MW FOWT Semi-Submersible Multi-Objective Optimization: A Comparative Study of PSO, SA, and ACO," Energies, MDPI, vol. 17(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5914-:d:1529066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boghdady, T.A. & Sayed, M.M. & Abu Elzahab, E.E., 2016. "Maximization of generated power from wind energy conversion system using a new evolutionary algorithm," Renewable Energy, Elsevier, vol. 99(C), pages 631-646.
    2. William W. Cooper & Shanling Li & Lawrence M. Seiford & Joe Zhu, 2011. "Sensitivity Analysis in DEA," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 71-91, Springer.
    3. Yong Ma & Aiming Zhang & Lele Yang & Chao Hu & Yue Bai, 2019. "Investigation on Optimization Design of Offshore Wind Turbine Blades based on Particle Swarm Optimization," Energies, MDPI, vol. 12(10), pages 1-18, May.
    4. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    5. Wang, Jiazhi & Ren, Yajun & Shi, Wei & Collu, Maurizio & Venugopal, Vengatesan & Li, Xin, 2025. "Multi-objective optimization design for a 15 MW semisubmersible floating offshore wind turbine using evolutionary algorithm," Applied Energy, Elsevier, vol. 377(PB).
    6. Marco Dorigo & Thomas Stützle, 2019. "Ant Colony Optimization: Overview and Recent Advances," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 311-351, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    2. Arvesen, Ø. & Medbø, V. & Fleten, S.-E. & Tomasgard, A. & Westgaard, S., 2013. "Linepack storage valuation under price uncertainty," Energy, Elsevier, vol. 52(C), pages 155-164.
    3. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    4. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    5. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    6. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    7. Jijian Lian & Yue Zhao & Chong Lian & Haijun Wang & Xiaofeng Dong & Qi Jiang & Huan Zhou & Junni Jiang, 2018. "Application of an Eddy Current-Tuned Mass Damper to Vibration Mitigation of Offshore Wind Turbines," Energies, MDPI, vol. 11(12), pages 1-18, November.
    8. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    9. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    10. Baisthakur, Shubham & Fitzgerald, Breiffni, 2024. "Physics-Informed Neural Network surrogate model for bypassing Blade Element Momentum theory in wind turbine aerodynamic load estimation," Renewable Energy, Elsevier, vol. 224(C).
    11. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    12. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    13. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    14. Zhu, Bing & Sun, Xiaojing & Wang, Ying & Huang, Diangui, 2017. "Performance characteristics of a horizontal axis turbine with fusion winglet," Energy, Elsevier, vol. 120(C), pages 431-440.
    15. Silva, Paolo & Giuffrida, Antonio & Fergnani, Nicola & Macchi, Ennio & Cantù, Matteo & Suffredini, Roberto & Schiavetti, Massimo & Gigliucci, Gianluca, 2014. "Performance prediction of a multi-MW wind turbine adopting an advanced hydrostatic transmission," Energy, Elsevier, vol. 64(C), pages 450-461.
    16. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    17. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    18. Kadoche, Elie & Gourvénec, Sébastien & Pallud, Maxime & Levent, Tanguy, 2023. "MARLYC: Multi-Agent Reinforcement Learning Yaw Control," Renewable Energy, Elsevier, vol. 217(C).
    19. Farrugia, R. & Sant, T. & Micallef, D., 2014. "Investigating the aerodynamic performance of a model offshore floating wind turbine," Renewable Energy, Elsevier, vol. 70(C), pages 24-30.
    20. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5914-:d:1529066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.