Explainable AI-Based Ensemble Clustering for Load Profiling and Demand Response
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
- Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
- Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
- Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
- Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carlo Drago & Alberto Costantiello & Massimo Arnone & Angelo Leogrande, 2025.
"Bridging Sustainability and Inclusion: Financial Access in the Environmental, Social, and Governance Landscape,"
JRFM, MDPI, vol. 18(7), pages 1-71, July.
- Carlo Drago & Alberto Costantiello & Massimo Arnone & Angelo Leogrande, 2025. "Bridging Sustainability and Inclusion: Financial Access in the Environmental, Social, and Governance Landscape," Working Papers hal-05082520, HAL.
- Drago, Carlo & Costantiello, Alberto & Arnone, Massimo & Leogrande, Angelo, 2025. "Bridging Sustainability and Inclusion: Financial Access in the Environmental, Social, and Governance Landscape," MPRA Paper 124827, University Library of Munich, Germany.
- Magaletti, Nicola & Nortarnicola, Valeria & Di Molfetta, Mauro & Mariani, Stefano & Leogrande, Angelo, 2025.
"Logistics Performance and ESG Outcomes: An Empirical Exploration Using IV Panel Models and Machine Learning,"
SocArXiv
huxcs_v1, Center for Open Science.
- Magaletti, Nicola & Notarnicola, Valeria & Di Molfetta, Mauro & Mariani, Stefano & Leogrande, Angelo, 2025. "Logistics Performance and ESG Outcomes: An Empirical Exploration Using IV Panel Models and Machine Learning," MPRA Paper 124746, University Library of Munich, Germany.
- Nicola Magaletti & Valeria Notarnicola & Mauro Di Molfetta & Stefano Mariani & Angelo Leogrande, 2025. "Logistics Performance and ESG Outcomes: An Empirical Exploration Using IV Panel Models and Machine Learning," Working Papers hal-05067753, HAL.
- Drago, Carlo & Costantiello, Alberto & Savorgnan, Marco & Leogrande, Angelo, 2025.
"Driving AI Adoption in the EU: A Quantitative Analysis of Macroeconomic Influences,"
MPRA Paper
124973, University Library of Munich, Germany.
- Carlo Drago & Alberto Costantiello & Marco Savorgnan & Angelo Leogrande, 2025. "Driving AI Adoption in the EU: A Quantitative Analysis of Macroeconomic Influences," Working Papers hal-05102974, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Russo, Marianna & Bertsch, Valentin, 2020.
"A looming revolution: Implications of self-generation for the risk exposure of retailers,"
Energy Economics, Elsevier, vol. 92(C).
- Russo, Marianna & Bertsch, Valentin, 2018. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Papers WP597, Economic and Social Research Institute (ESRI).
- Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
- Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
- Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
- Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
- Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
- Ahir, Rajesh K. & Chakraborty, Basab, 2023. "A data-driven analytic approach for investigation of electricity demand variability for energy conservation programs," Energy, Elsevier, vol. 282(C).
- Ruhang, Xu, 2020. "Efficient clustering for aggregate loads: An unsupervised pretraining based method," Energy, Elsevier, vol. 210(C).
- Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
- Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
- Do-Hyeon Ryu & Ryu-Hee Kim & Seung-Hyun Choi & Kwang-Jae Kim & Young Myoung Ko & Young-Jin Kim & Minseok Song & Dong Gu Choi, 2020. "Utilizing Electricity Consumption Data to Assess the Noise Discomfort Caused by Electrical Appliances between Neighbors: A Case Study of a Campus Apartment Building," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
- Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
- Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
- Robbert Claeys & Hakim Azaioud & Rémy Cleenwerck & Jos Knockaert & Jan Desmet, 2020. "A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands," Energies, MDPI, vol. 14(1), pages 1-24, December.
- Jieyi Kang & David Reiner, 2021.
"Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China,"
Working Papers
EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kang, J. & Reiner, D., 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Cambridge Working Papers in Economics 2143, Faculty of Economics, University of Cambridge.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5559-:d:1515818. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.